cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192481 a(n) = Sum_{i=1..n-1} (2^i*C(i)-a(i)) * (2^(n-i)*C(n-i)-a(n-i)), a(1)=1, where C(i)=A000108(i-1) are Catalan numbers.

Original entry on oeis.org

1, 1, 6, 29, 162, 978, 6156, 40061, 267338, 1819238, 12576692, 88079378, 623581332, 4455663876, 32090099352, 232711721757, 1697799727066, 12452943237342, 91774314536100, 679234371006982, 5046438870909244, 37623611703611452, 281391143518722728
Offset: 1

Views

Author

Volkan Yildiz, Jul 01 2011

Keywords

Comments

a(n) is the number of rows with the value false in the truth tables of all bracketed m-implication, case (i), with n distinct variables.

Crossrefs

Programs

  • Maple
    C := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A192481 := proc(n) option remember; if n<=1 then n; else add( (2^i*C(i-1)-procname(i))*(2^(n-i)*C(n-i-1)-procname(n-i)), i=1..n-1) ; end if; end proc:
  • Mathematica
    CoefficientList[Series[(2 - Sqrt[1 - 8*x] - Sqrt[3 - 4*x - 2*Sqrt[1 - 8*x]])/2, {x,0,50}], x] (* G. C. Greubel, Feb 12 2017 *)
  • PARI
    x='x+O('x^50); Vec((2-sqrt(1-8*x)-sqrt(3-4*x-2*sqrt(1-8*x)))/2) \\ G. C. Greubel, Feb 12 2017

Formula

G.f.: (2 - sqrt(1-8*x) - sqrt(3 - 4*x - 2*sqrt(1-8*x)))/2.
For large n, a(n) is asymptotically (1-2/sqrt 10) * 2^(3n-2)/ sqrt(pi*n^3).
D-finite with recurrence 10*n*(n-1)*(n-2)*a(n) -(n-1)*(n-2)*(149*n-396)*a(n-1) +2*(n-2)*(244*n^2-1618*n+2517)*a(n-2) +4
*(76*n^3-696*n^2+2165*n-2289)*a(n-3) +16*(2*n-9)*(56*n^2-336*n+451)*a(n-4) -256*(n-5)*(2*n-9)*(2*n-11)*a(n-5)=0. - R. J. Mathar, Jun 19 2021

Extensions

a(0) removed from definition by Georg Fischer, Jun 19 2021