cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192505 Non-ludic numbers that are prime numbers.

Original entry on oeis.org

19, 31, 59, 73, 79, 101, 103, 109, 113, 137, 139, 151, 163, 167, 191, 197, 199, 229, 241, 251, 263, 269, 271, 281, 293, 311, 317, 347, 349, 367, 373, 379, 401, 409, 439, 443, 449, 457, 461, 479, 487, 491, 499, 521, 523, 547, 557, 563, 569, 571, 587, 599, 601
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2011

Keywords

Crossrefs

Intersection of A000040 and A192607.

Programs

  • Haskell
    a192505 n = a192505_list !! (n-1)
    a192505_list = filter ((== 1) . a010051) a192607_list
  • Mathematica
    a3309[nmax_] := a3309[nmax] = Module[{t = Range[2, nmax], k, r = {1}}, While[Length[t] > 0, k = First[t]; AppendTo[r, k]; t = Drop[t, {1, -1, k}]]; r];
    ludicQ[n_, nmax_] /; 1 <= n <= nmax := MemberQ[a3309[nmax], n];
    terms = 1000;
    f[nmax_] := f[nmax] = Select[Range[nmax], !ludicQ[#, nmax] && PrimeQ[#]&] // PadRight[#, terms]&;
    f[nmax = terms];
    f[nmax = 2 nmax];
    While[f[nmax] != f[nmax/2], nmax = 2 nmax];
    seq = f[nmax] (* Jean-François Alcover, Dec 10 2021, after Ray Chandler in A003309 *)

Formula

(1-A010051(a(n)))*A192490(a(n)) = 1.