A192517 Table read by antidiagonals: T(n,k) = number of multigraphs with n vertices and k edges, with no loops allowed (n >= 1, k >= 0).
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 3, 6, 4, 1, 0, 1, 1, 3, 7, 11, 5, 1, 0, 1, 1, 3, 8, 17, 18, 7, 1, 0, 1, 1, 3, 8, 21, 35, 32, 8, 1, 0, 1, 1, 3, 8, 22, 52, 76, 48, 10, 1, 0, 1, 1, 3, 8, 23, 60, 132, 149, 75, 12, 1, 0
Offset: 1
Examples
Table begins: [1,0,0,0,0,0,0,0,0,...], [1,1,1,1,1,1,1,1,1,...], [1,1,2,3,4,5,7,8,10,...], [1,1,3,6,11,18,32,48,75,...], [1,1,3,7,17,35,76,149,291,...], [1,1,3,8,21,52,132,313,741,...], [1,1,3,8,22,60,173,471,1303,...], [1,1,3,8,23,64,197,588,1806,...], ...
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (terms 1..78 from Alberto Tacchella computed using nauty 2.4, terms 79..595 from Sean A. Irvine computed using cycle index method of Harary and Palmer).
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017), Table 69.
Programs
-
PARI
\\ See A191646 for G function. R(n)={Mat(vectorv(n, k, concat([1], G(k, n-1))))} { my(A=R(10)); for(n=1, #A, for(k=1, #A, print1(A[n,k], ", "));print) } \\ Andrew Howroyd, May 14 2018
Comments