A192554 a(n) = Sum_{k=0..n} abs(Stirling1(n,k))*(-1)^(n-k)*k!^2.
1, 1, 3, 26, 398, 9724, 344236, 16663968, 1056631824, 84962783664, 8446120969104, 1016998946575776, 145848462866589600, 24562489788256472064, 4799789988678066147840, 1077128972416478325901824, 275111625956753684599202304
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..253
Programs
-
Mathematica
Table[Sum[Abs[StirlingS1[n,k]](-1)^(n-k)k!^2,{k,0,n}],{n,0,100}] Table[Sum[StirlingS1[n,k] * k!^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2021 *)
-
Maxima
makelist(sum(abs(stirling1(n,k))*(-1)^(n-k)*k!^2,k,0,n),n,0,24);
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, k!*log(1+x)^k))) \\ Seiichi Manyama, Apr 22 2022
Formula
a(n) = Sum_{k=0..n} Stirling1(n,k) * k!^2. - Vaclav Kotesovec, Jul 05 2021
a(n) ~ exp(-1/2) * n!^2. - Vaclav Kotesovec, Jul 05 2021
E.g.f.: Sum_{k>=0} k! * log(1+x)^k. - Seiichi Manyama, Apr 22 2022