cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192554 a(n) = Sum_{k=0..n} abs(Stirling1(n,k))*(-1)^(n-k)*k!^2.

Original entry on oeis.org

1, 1, 3, 26, 398, 9724, 344236, 16663968, 1056631824, 84962783664, 8446120969104, 1016998946575776, 145848462866589600, 24562489788256472064, 4799789988678066147840, 1077128972416478325901824, 275111625956753684599202304
Offset: 0

Views

Author

Emanuele Munarini, Jul 04 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n,k]](-1)^(n-k)k!^2,{k,0,n}],{n,0,100}]
    Table[Sum[StirlingS1[n,k] * k!^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2021 *)
  • Maxima
    makelist(sum(abs(stirling1(n,k))*(-1)^(n-k)*k!^2,k,0,n),n,0,24);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, k!*log(1+x)^k))) \\ Seiichi Manyama, Apr 22 2022

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * k!^2. - Vaclav Kotesovec, Jul 05 2021
a(n) ~ exp(-1/2) * n!^2. - Vaclav Kotesovec, Jul 05 2021
E.g.f.: Sum_{k>=0} k! * log(1+x)^k. - Seiichi Manyama, Apr 22 2022