A192555 a(n) = Sum_{k=0..n} Stirling2(n+1, k+1)*(-1)^(n-k)*k!^2.
1, 0, 2, 18, 302, 7770, 285182, 14169498, 916379102, 74833699770, 7532323742462, 916288114073178, 132533661862902302, 22482642651307262970, 4420834602574484743742, 997471931914411955132058, 255978001773528747607767902, 74137405656663750753878861370
Offset: 0
Keywords
Programs
-
Maple
ATFactorial := proc(len) local k, j, A, R, F; F := 1; for k from 0 to len do R[k] := F; F := F * (k + 1); for j from k by -1 to 1 do R[j - 1] := j * (R[j] - R[j-1]) od; A[k] := R[0]; od; convert(A, list) end: ATFactorial(17); # Peter Luschny, Apr 19 2024
-
Mathematica
Table[Sum[StirlingS2[n+1,k+1](-1)^(n-k)k!^2,{k,0,n}],{n,0,100}]
-
Maxima
makelist(sum(stirling2(n+1,k+1)*(-1)^(n-k)*k!^2,k,0,n),n,0,24);
Formula
a(n) = (-1)^n * Sum_{k=0..n} A163626(n, k)*k!. - Philippe Deléham, May 25 2015
a(n) ~ exp(-1/2) * n!^2. - Vaclav Kotesovec, Jul 05 2021
Comments