cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192555 a(n) = Sum_{k=0..n} Stirling2(n+1, k+1)*(-1)^(n-k)*k!^2.

Original entry on oeis.org

1, 0, 2, 18, 302, 7770, 285182, 14169498, 916379102, 74833699770, 7532323742462, 916288114073178, 132533661862902302, 22482642651307262970, 4420834602574484743742, 997471931914411955132058, 255978001773528747607767902, 74137405656663750753878861370
Offset: 0

Views

Author

Emanuele Munarini, Jul 04 2011

Keywords

Comments

This sequence is the Akiyama-Tanigawa transform of the factorial numbers. - Peter Luschny, Apr 19 2024

Crossrefs

Programs

  • Maple
    ATFactorial := proc(len)
    local k, j, A, R, F; F := 1;
        for k from 0 to len do
            R[k] := F; F := F * (k + 1);
            for j from k by -1 to 1 do
                R[j - 1] := j * (R[j] - R[j-1])
            od;
            A[k] := R[0];
        od; convert(A, list) end:
    ATFactorial(17);  # Peter Luschny, Apr 19 2024
  • Mathematica
    Table[Sum[StirlingS2[n+1,k+1](-1)^(n-k)k!^2,{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(stirling2(n+1,k+1)*(-1)^(n-k)*k!^2,k,0,n),n,0,24);

Formula

a(n) = (-1)^n * Sum_{k=0..n} A163626(n, k)*k!. - Philippe Deléham, May 25 2015
a(n) ~ exp(-1/2) * n!^2. - Vaclav Kotesovec, Jul 05 2021