cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344639 Array read by ascending antidiagonals: A(n, k) is the number of (n, k)-poly-Cauchy permutations.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 4, 1, 24, 17, 13, 8, 1, 120, 74, 51, 35, 16, 1, 720, 394, 244, 161, 97, 32, 1, 5040, 2484, 1392, 854, 531, 275, 64, 1, 40320, 18108, 9260, 5248, 3148, 1817, 793, 128, 1, 362880, 149904, 70508, 36966, 20940, 12134, 6411, 2315, 256, 1
Offset: 0

Views

Author

Stefano Spezia, May 25 2021

Keywords

Comments

An (n, k)-poly-Cauchy permutation is a permutation which satisfies the properties listed by Bényi and Ramírez in Definition 1.

Examples

			n\k|   0     1     2     3     4 ...
---+----------------------------
0  |   1     1     1     1     1 ...
1  |   1     2     4     8    16 ...
2  |   2     5    13    35    97 ...
3  |   6    17    51   161   531 ...
4  |  24    74   244   854  3148 ...
...
		

Crossrefs

Rows n=0..2 give A000012, A000079, A007689.
Columns k=0..5 give A000142, A000774, |A223899|, |A223901|, |A223902|, |A223904|.
Main diagonal gives A192563.
Antidiagonal sums give A344640.

Programs

  • Mathematica
    A[n_,k_]:=Sum[Abs[StirlingS1[n,m]](m+1)^k,{m,0,n}]; Flatten[Table[A[n-k,k],{n,0,9},{k,0,n}]]

Formula

A(n, k) = Sum_{m=0..n} abs(S1(n, m)) * (m + 1)^k, where S1 indicates the signed Stirling numbers of first kind (see Theorem 5 in Bényi and Ramírez).
A(n, 0) = n! = A000142(n) (see Example 6 in Bényi and Ramírez).
A(1, k) = 2^k = A000079(k) (see Example 7 in Bényi and Ramírez).
A(2, k) = 2^k + 3^k = A007689(k) (see Example 8 in Bényi and Ramírez).
Sum_{m=0..n} (-1)^m*S2(n, m)*A(m, k) = (-1)^n*(n + 1)^k, where S2 indicates the Stirling numbers of the second kind (see Theorem 9 in Bényi and Ramírez).
A(n, k) = Sum_{j=0..k} j! * abs(S1(n+1, j+1)) * S2(k+1, j+1) (see Theorem 14 in Bényi and Ramírez).
A(n, k) = (n - 1)*A(n-1, k) + Sum_{i=0..k} C(k, i)*A(n-1, k-i) for n > 0 (see Theorem 15 in Bényi and Ramírez).
A(n, k) = Sum_{i=0..n} Sum_{j=0..k} C(n-1, i)*i!*C(k, j)*A(n-1-i, k-j) for n > 0 (see Theorem 17 in Bényi and Ramírez).
A(n, k) = Sum_{m=0..n} Sum_{i=0..m} C(k-i, m-i)*S2(k, i)*abs(S1(n+1, m+1)) (see Theorem 18 in Bényi and Ramírez).
From Seiichi Manyama, Apr 15 2025: (Start)
E.g.f. of column k: Sum_{j>=0} (j+1)^k * (-log(1-x))^j / j!.
E.g.f. of column k: (1/(1-x)) * Sum_{j=0..k} Stirling2(k+1,j+1) * (-log(1-x))^j. (End)

A383064 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. Sum_{j>=0} (j+1)^k * (-log(1-x))^j / j!.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 5, 6, 1, 8, 13, 17, 24, 1, 16, 35, 51, 74, 120, 1, 32, 97, 161, 244, 394, 720, 1, 64, 275, 531, 854, 1392, 2484, 5040, 1, 128, 793, 1817, 3148, 5248, 9260, 18108, 40320, 1, 256, 2315, 6411, 12134, 20940, 36966, 70508, 149904, 362880
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2025

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,      1,      1,       1, ...
    1,    2,    4,     8,     16,     32,      64, ...
    2,    5,   13,    35,     97,    275,     793, ...
    6,   17,   51,   161,    531,   1817,    6411, ...
   24,   74,  244,   854,   3148,  12134,   48604, ...
  120,  394, 1392,  5248,  20940,  87784,  384252, ...
  720, 2484, 9260, 36966, 156680, 699894, 3274640, ...
		

Crossrefs

Mirror of A344639.
Main diagonal gives A192563.

Programs

  • PARI
    a(n, k) = sum(j=0, n, j!*abs(stirling(n+1, j+1, 1))*stirling(k+1, j+1, 2));

Formula

See A344639.
Showing 1-2 of 2 results.