cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192574 a(n) = Sum_{k=0..n} binomial(n,k)*floor(sqrt(Bell(k)))*floor(sqrt(Bell(n-k))).

Original entry on oeis.org

1, 2, 4, 10, 28, 84, 282, 968, 3574, 13526, 53248, 215288, 889072, 3749808, 16120368, 70569136, 314384296, 1424490556, 6561255338, 30706715780, 145947430208, 704170163362, 3447329246534, 17116783509170, 86161074446406, 439511863198824, 2271055875812692
Offset: 0

Views

Author

Emanuele Munarini, Jul 04 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Floor[Sqrt[BellB[k]]]Floor[Sqrt[BellB[n-k]]],{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)*floor(sqrt(belln(k)))*floor(sqrt(belln(n-k))),k,0,n),n,0,28);

A192576 a(n) = sum(binomial(n,k)*floor(sqrt(Bell(k))),k=0..n).

Original entry on oeis.org

1, 2, 4, 9, 22, 58, 163, 478, 1439, 4415, 13780, 43757, 141400, 465016, 1555961, 5294885, 18315089, 64357854, 229601019, 831132731, 3051030786, 11351968321, 42788503744, 163309466037, 630861836558, 2465577001903, 9745376900983
Offset: 0

Views

Author

Emanuele Munarini, Jul 04 2011

Keywords

Crossrefs

The Bell numbers are A000110.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Floor[Sqrt[BellB[k]]],{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)*floor(sqrt(belln(k))),k,0,n),n,0,28);
Showing 1-2 of 2 results.