cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A192622 G.f. satisfies: A(x) = Product_{n>=0} (1 + x^(n+1)*A(x)^n)^2/(1 - x^(n+1)*A(x)^n)^2.

Original entry on oeis.org

1, 4, 12, 48, 220, 1080, 5600, 30112, 166300, 937620, 5374200, 31221488, 183430656, 1087975256, 6505878592, 39179738400, 237412139260, 1446488046824, 8855937880108, 54455375407504, 336159421649528, 2082508824181856, 12942736191473792
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2011

Keywords

Comments

Related q-series (Heine) identity:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n)); here q=x*A(x), x=x, y=z=1.

Examples

			G.f.: A(x) = 1 + 4*x + 12*x^2 + 48*x^3 + 220*x^4 + 1080*x^5 +...
The g.f. A = A(x) satisfies the following relations:
A = (1+x)^2/(1-x)^2 * (1+x^2*A)^2/(1-x^2*A)^2 * (1+x^3*A^2)^2/(1-x^3*A^2)^2 *...
A = 1 + 4*x/((1-x)*(1-x*A)) + 4*x^2*(1+x*A)^2/((1-x)*(1-x*A)*(1-x^2*A)*(1-x^2*A^2)) + 4*x^3*(1+x*A)^2*(1+x^2*A^2)^2/((1-x)*(1-x*A)*(1-x^2*A)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x^3*A^3)) +...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) Chop[{1/r, s*Sqrt[(QPochhammer[r, r*s]*(Log[r*s] - 2*QPolyGamma[0, Log[-r]/Log[r*s], r*s] + 2*QPolyGamma[0, Log[r]/Log[r*s], r*s]))/(Pi* Log[r*s]*(QPochhammer[r, r*s] - 4*r*s*(Derivative[0, 1][QPochhammer][r, r*s] - r*Sqrt[s]*Derivative[0, 2][QPochhammer][-r, r*s] + r*s*Derivative[0, 2][QPochhammer][r, r*s])))]} /. FindRoot[{QPochhammer[-r, r*s]^2/QPochhammer[r, r*s]^2 == s, QPochhammer[r, r*s]^2 + 2*r*s*QPochhammer[r, r*s] * Derivative[0, 1][QPochhammer][r, r*s] == 2*r*QPochhammer[-r, r*s] * Derivative[0, 1][QPochhammer][-r, r*s]}, {r, 1/6}, {s, 3}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Jun 30 2025 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(k=0,n,(1+x^(k+1)*A^k)^2/(1-x^(k+1)*(A+x*O(x^n))^k)^2));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*prod(k=0,m-1,(1+x^k*A^k)^2/((1-x^(k+1)*A^k +x*O(x^n))*(1-x^(k+1)*A^(k+1))))));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (1 + x^k*A(x)^k)^2/((1 - x^(k+1)*A(x)^k)*(1 - x^(k+1)*A(x)^(k+1)) due to the Heine identity.
Self-convolution of A192623.
a(n) ~ c * d^n / n^(3/2), where d = 6.65133046938958271... and c = 1.095759838870545... - Vaclav Kotesovec, Jun 30 2025

A192624 G.f. satisfies: A(x) = Product_{n>=1} (1+x^n)*(1 + x^n*A(x))/((1-x^n)*(1 - x^n*A(x))).

Original entry on oeis.org

1, 4, 20, 112, 676, 4328, 28912, 199392, 1409364, 10157828, 74375640, 551715264, 4137527408, 31318286632, 238958947328, 1835960454272, 14192132860868, 110298595778872, 861338925309604, 6755283201399776, 53185599585579640
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2011

Keywords

Comments

Related q-series (Heine) identity:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n)), here q=x, x=x, y=A(x), z=1.

Examples

			G.f.: A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 676*x^4 + 4328*x^5 +...
The g.f. A = A(x) satisfies:
A = (1+x)*(1+x*A)/((1-x)*(1-x*A)) * (1+x^2)*(1+x^2*A)/((1-x^2)*(1-x^2*A)) * (1+x^3)*(1+x^3*A)/((1-x^3)*(1-x^3*A)) *...
A = {1 + 2*x*(A+1)/(1-x)^2 + 2*x^2*(A+1)*(A+x)*(1+x)/((1-x)*(1-x^2))^2 + 2*x^3*(A+1)*(A+x)*(A+x^2)*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3))^2 +...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) Chop[{1/r, (1/(2*Sqrt[Pi]))* Sqrt[((-1 + s)^2*s*(1 + s)* Log[r]*(-2*r*s*(1 + s)*Log[r]*QPochhammer[r, r]*QPochhammer[s, r]* Derivative[0, 1][QPochhammer][-1, r] + r*(-1 + s)*Log[r]*QPochhammer[-1, r]^2* Derivative[0, 1][QPochhammer][-s, r] + 2*s*(1 + s)*QPochhammer[-1, r]* (r*Log[r]*QPochhammer[s, r]* Derivative[0, 1][QPochhammer][r, r] + QPochhammer[r, r]* ((-QPochhammer[s, r])*(Log[1 - r] + QPolyGamma[0, 1, r]) + r*Log[r]*Derivative[0, 1][QPochhammer][s, r]))))/ (QPochhammer[-1, r]*QPochhammer[r, r]* QPochhammer[s, r]*(2*s*(1 + s^2)*Log[r]^2 + (-1 + s^2)^2* QPolyGamma[1, Log[-s]/Log[r], r] - (-1 + s^2)^2* QPolyGamma[1, Log[s]/Log[r], r]))]} /. FindRoot[{2* s + ((-1 + s)*QPochhammer[-1, r]*QPochhammer[-s, r])/((1 + s)* QPochhammer[r, r]*QPochhammer[s, r]) == 0, (2*s)/(-1 + s^2) + (-QPolyGamma[0, Log[-s]/Log[r], r] + QPolyGamma[0, Log[s]/Log[r], r])/Log[r] == 1}, {r, 1/8}, {s, 3}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Jun 30 2025 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A)*(1+x^k)/((1-x^k+x*O(x^n))*(1-x^k*A))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*prod(k=0,m-1,(A+x^k)*(1+x^k)/(1-x^(k+1)+x*O(x^n))^2)));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (A(x) + x^k)*(1+x^k)/(1-x^(k+1))^2 due to the Heine identity.
a(n) ~ c * d^n / n^(3/2), where d = 8.48061441094248725740275431395... and c = 1.3507361818605928928927572... - Vaclav Kotesovec, Jun 30 2025

A192621 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x)^2)/(1 - x^n*A(x)^2).

Original entry on oeis.org

1, 2, 12, 88, 726, 6456, 60392, 585792, 5838764, 59440250, 615431464, 6460681656, 68607630680, 735682014648, 7954732578032, 86635206695808, 949518438959574, 10464751843723840, 115904823140622164, 1289419736206548408, 14401729960605163272
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2011

Keywords

Comments

Related q-series (Heine) identity:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n)); here q=x, x=x*A(x)^2, y=1, z=0.

Examples

			G.f.: A(x) = 1 + 2*x + 12*x^2 + 88*x^3 + 726*x^4 + 6456*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A^2)/(1-x*A^2) * (1+x^2*A^2)/(1-x^2*A^2) * (1+x^3*A^2)/(1-x^3*A^2) * ...
(1) A = 1 + 2*x*A^2/(1-x) + 2*x^2*A^4*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^6*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A = 1 + 2*x*A^2/((1-x*A^2)*(1-x)) + 2*x^3*A^4*(1+x)/((1-x*A^2)*(1-x^2*A^2)*(1-x)*(1-x^2)) + 2*x^6*A^6*(1+x)*(1+x^2)/((1-x*A^2)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x)*(1-x^2)*(1-x^3)) + ...
(3) A^2 = 1 + 4*x*A^2/((1-x*A^2)*(1-x)) + 4*x^2*A^4*(1+x)^2/((1-x*A^2)*(1-x^2*A^2)*(1-x)*(1-x^2)) + 4*x^3*A^6*(1+x)^2*(1+x^2)^2/((1-x*A^2)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Cf. A192620 (g.f. A(x)^2), A192623, A190862, A196150, A196151.

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x]^2)/(1 - x^k*A[x]^2), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
    (* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-s^2, r] / QPochhammer[s^2, r] == s*((1 + s^2)/(1 - s^2)), QPolyGamma[0, Log[-s^2]/Log[r], r] - QPolyGamma[0, Log[s^2]/Log[r], r] == (2*(s^2/(s^4 - 1)) - 1/2) * Log[r]}, {r, 1/12}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A^2)/(1-x^k*A^2+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*A^(2*m)*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A^2 +x*O(x^n))*(1-x^k))))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^(2*m)*prod(k=1,m,(1+x^(k-1))/((1-x^k*A^2 +x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^(2*m)*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))) );polcoeff(A,n)}

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(2*n) * Product_{k=1..n} (1+x^(k-1))/(1-x^k), due to the q-binomial theorem.
(2) A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2)*A(x)^(2*n) * Product_{k=1..n} (1+x^(k-1))/((1-x^k*A(x)^2)*(1-x^k)), due to the Heine identity.
(3) A(x)^2 = 1 + Sum_{n>=1} x^n*A(x)^(2*n) * Product_{k=1..n} (1+x^(k-1))^2/((1-x^k*A(x)^2)*(1-x^k), due to the Heine identity.
Self-convolution yields A192620.
a(n) ~ c * d^n / n^(3/2), where d = 12.042513458183758627924432194393539477581... and c = 0.323075847195701225672585138139173170517867693... - Vaclav Kotesovec, Oct 04 2023
Radius of convergence r = 0.083039143238027913107320323917684421045... = 1/d and A(r) = 1.624363189835514855585723923742556266289... satisfy A(r) = 1 / sqrt( Sum_{n>=1} 4*r^n/(1 - r^(2*n)*A(r)^4) ) and A(r) = Product_{n>=1} (1 + r^n*A(r)^2)/(1 - r^n*A(r)^2). - Paul D. Hanna, Mar 02 2024

A192625 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))^2/((1-x^n)*(1 - x^n*A(x)^2)).

Original entry on oeis.org

1, 4, 28, 240, 2348, 24952, 280192, 3271232, 39310668, 483032980, 6041149272, 76648727632, 984161689728, 12764078032568, 166969699620640, 2200415358484800, 29186416580736300, 389340777798701672, 5220028320540100220, 70303231772070200912
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2011

Keywords

Comments

Related q-series (Heine) identity:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n)),
here q=x, x=x, y=z=A(x).

Examples

			G.f.: A(x) = 1 + 4*x + 28*x^2 + 240*x^3 + 2348*x^4 + 24952*x^5 +...
The g.f. A = A(x) satisfies:
A = (1+x*A)^2/((1-x)*(1-x*A^2)) * (1+x^2*A)^2/((1-x^2)*(1-x^2*A^2)) * (1+x^3*A)^2/((1-x^3)*(1-x^3*A^2)) *...
A = {1 + x*(A+1)^2/(1-x)^2 + x^2*(A+1)^2*(A+x)^2/((1-x)*(1-x^2))^2 + x^3*(A+1)^2*(A+x)^2*(A+x^2)^2/((1-x)*(1-x^2)*(1-x^3))^2 +...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) Chop[{1/r, (1/(2*Sqrt[Pi]))*s*(-1 + s^2)* Sqrt[(Log[ r]*(r*Log[r]*QPochhammer[-s, r]*QPochhammer[s^2, r] * Derivative[0, 1][QPochhammer][r, r] + QPochhammer[r, r]*(-2*r*Log[r]*QPochhammer[s^2, r]* Derivative[0, 1][QPochhammer][-s, r] + QPochhammer[-s, r]*((-QPochhammer[s^2, r])*(Log[1 - r] + QPolyGamma[0, 1, r]) + r*Log[r] * Derivative[0, 1][QPochhammer][s^2, r]))))/(QPochhammer[ r, r]*QPochhammer[-s, r]*QPochhammer[s^2, r] * (s*(1 + s^2) * Log[r]^2 + (-1 + s^2)^2 * QPolyGamma[1, Log[-s]/Log[r], r] - 2*(-1 + s^2)^2 * QPolyGamma[1, (2*Log[s])/Log[r], r]))]} /. FindRoot[{s + ((-1 + s) * QPochhammer[-s, r]^2)/((1 + s) * QPochhammer[r, r] * QPochhammer[s^2, r]) == 0, (2*s)/(-1 + s^2) + (2*(-QPolyGamma[0, Log[-s]/Log[r], r] + QPolyGamma[0, (2*Log[s])/Log[r], r]))/Log[r] == 1}, {r, 1/10}, {s, 2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Jun 30 2025 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A)^2/((1-x^k+x*O(x^n))*(1-x^k*A^2))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*prod(k=0,m-1,(A+x^k)^2/(1-x^(k+1)+x*O(x^n))^2)));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (A(x) + x^k)^2/(1-x^(k+1))^2 due to the Heine identity.
a(n) ~ c * d^n / n^(3/2), where d = 14.589835921559349866989401284706614286378779559... and c = 0.453836352355009937995115064134624562210185... - Vaclav Kotesovec, Jun 30 2025
Showing 1-4 of 4 results.