A190862
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))/(1 - x^n*A(x)).
Original entry on oeis.org
1, 2, 8, 36, 174, 888, 4716, 25808, 144568, 825030, 4780176, 28045860, 166295716, 994959560, 5999349896, 36420226288, 222415222446, 1365445230212, 8422174103796, 52168047039764, 324366739546304, 2023789526326096
Offset: 0
G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 174*x^4 + 888*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A)/(1-x*A) * (1+x^2*A)/(1-x^2*A) * (1+x^3*A)/(1-x^3*A) * ...
(1) A = 1 + 2*x*A/(1-x) + 2*x^2*A^2*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^3*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A = 1 + 2*x*A/((1-x*A)*(1-x)) + 2*x^3*A^2*(1+x)/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 2*x^6*A^3*(1+x)*(1+x^2)/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ...
(3) A^2 = 1 + 4*x*A/((1-x*A)*(1-x)) + 4*x^2*A^2*(1+x)^2/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 4*x^3*A^3*(1+x)^2*(1+x^2)^2/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ... (cf. A192619)
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])/(1 - x^k*A[x]), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{(s-1)*QPochhammer[-s, r] == -s*(s+1) * QPochhammer[s, r], (s^2 - 1)*(QPolyGamma[0, Log[-s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]) + Log[r]*(s^2 - 2*s - 1) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 26 2023 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(m=1,n,(1+x^m*A)/(1-x^m*A+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^m*prod(k=1,m,(1+x^(k-1))/((1-x^k*A+x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A+x*O(x^n))*(1-x^k))))));polcoeff(A,n)}
A192620
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))^2/(1 - x^n*A(x))^2.
Original entry on oeis.org
1, 4, 28, 224, 1948, 17928, 171776, 1695872, 17133436, 176297668, 1841222776, 19467629120, 207978652416, 2241618514120, 24345336854400, 266168049520832, 2927074607294300, 32356419163487336, 359330087240388828, 4007079691584624576
Offset: 0
G.f.: A(x) = 1 + 4*x + 28*x^2 + 224*x^3 + 1948*x^4 + 17928*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A)^2/(1-x*A)^2 * (1+x^2*A)^2/(1-x^2*A)^2 * (1+x^3*A)^2/(1-x^3*A)^2 * ...
(1) A = 1 + 4*x*A/((1-x*A)*(1-x)) + 4*x^2*A^2*(1+x)^2/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 4*x^3*A^3*(1+x)^2*(1+x^2)^2/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ...
(2) A^(1/2) = 1 + 2*x*A/(1-x) + 2*x^2*A^2*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^3*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])^2/(1 - x^k*A[x])^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
(* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(r*s^(3/2)*((-1 + s)*Derivative[0, 1][QPochhammer][-s, r] + Sqrt[s]*(1 + s)*Derivative[0, 1][QPochhammer][s, r]))/(2* Pi*(1 + s)*QPochhammer[s, r]* (2* s*((1 + s^2)/(-1 + s^2)^2) + (QPolyGamma[1, Log[-s]/Log[r], r] - QPolyGamma[1, Log[s]/Log[r], r])/ Log[r]^2))]} /. FindRoot[{(-1 + s)^2*(QPochhammer[-s, r]^2/((1 + s)^2*QPochhammer[s, r]^2)) == s, 1 - 4*(s/(-1 + s^2)) + (2*(QPolyGamma[0, Log[-s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]))/Log[r] == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Mar 03 2024 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A)^2/(1-x^k*A+x*O(x^n))^2));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A+x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=(1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))))^2);polcoeff(A,n)}
A192623
G.f. satisfies: A(x) = Product_{n>=0} (1 + x^(n+1)*A(x)^(2*n))/(1 - x^(n+1)*A(x)^(2*n)).
Original entry on oeis.org
1, 2, 4, 16, 70, 336, 1720, 9152, 50140, 280882, 1601496, 9263424, 54224312, 320611152, 1912003536, 11487287872, 69463274022, 422440713680, 2582081184572, 15853795192704, 97736576247976, 604744065493936, 3754311394271208, 23377930236777152
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 16*x^3 + 70*x^4 + 336*x^5 + 1720*x^6 +...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x)/(1-x) * (1+x^2*A^2)/(1-x^2*A^2) * (1+x^3*A^4)/(1-x^3*A^4) * (1+x^4*A^6)/(1-x^4*A^6)*...
(1) A = 1 + 2*x/((1-x)*(1-x*A^2)) + 2*x^3*A^2*(1+x*A^2)/((1-x)*(1-x*A^2)*(1-x^2*A^2)*(1-x^2*A^4)) + 2*x^6*A^6*(1+x*A^2)*(1+x^2*A^4)/((1-x)*(1-x*A^2)*(1-x^2*A^2)*(1-x^2*A^4)*(1-x^3*A^4)*(1-x^3*A^6)) +...
(2) A^2 = 1 + 4*x/((1-x)*(1-x*A^2)) + 4*x^2*(1+x*A^2)^2/((1-x)*(1-x*A^2)*(1-x^2*A^2)*(1-x^2*A^4)) + 4*x^3*(1+x*A^2)^2*(1+x^2*A^4)^2/((1-x)*(1-x*A^2)*(1-x^2*A^2)*(1-x^2*A^4)*(1-x^3*A^4)*(1-x^3*A^6)) +...
-
(* Calculation of constants {d,c}: *) Chop[{1/r, (s*Sqrt[(QPochhammer[r, r*s^2]*(Log[r*s^2] - 2*QPolyGamma[0, Log[-r]/Log[r*s^2], r*s^2] + 2*QPolyGamma[0, Log[r]/Log[r*s^2], r*s^2]))/(Log[ r*s^2]*(QPochhammer[r, r*s^2] - 4*r*s^2*(Derivative[0, 1][QPochhammer][r, r*s^2] + r*s*(-Derivative[0, 2][QPochhammer][-r, r*s^2] + s*Derivative[0, 2][QPochhammer][r, r*s^2]))))])/(2* Sqrt[Pi])} /. FindRoot[{s == QPochhammer[-r, r*s^2]/QPochhammer[r, r*s^2], QPochhammer[r, r*s^2] + 2*r*s^2*Derivative[0, 1][QPochhammer][r, r*s^2] == 2*r*s*Derivative[0, 1][QPochhammer][-r, r*s^2]}, {r, 1/6}, {s, 3/2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Jun 30 2025 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(k=0,n,(1+x^(k+1)*A^(2*k))/(1-x^(k+1)*(A+x*O(x^n))^(2*k))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^(m*(m-1))*prod(k=0,m-1,(1+x^k*A^(2*k))/((1-x^(k+1)*A^(2*k))*(1-x^(k+1)*A^(2*k+2) +x*O(x^n))))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*prod(k=0,m-1,(1+x^k*A^(2*k))^2/((1-x^(k+1)*A^(2*k) +x*O(x^n))*(1-x^(k+1)*A^(2*k+2)))))));polcoeff(A,n)}
Showing 1-3 of 3 results.
Comments