A192622
G.f. satisfies: A(x) = Product_{n>=0} (1 + x^(n+1)*A(x)^n)^2/(1 - x^(n+1)*A(x)^n)^2.
Original entry on oeis.org
1, 4, 12, 48, 220, 1080, 5600, 30112, 166300, 937620, 5374200, 31221488, 183430656, 1087975256, 6505878592, 39179738400, 237412139260, 1446488046824, 8855937880108, 54455375407504, 336159421649528, 2082508824181856, 12942736191473792
Offset: 0
G.f.: A(x) = 1 + 4*x + 12*x^2 + 48*x^3 + 220*x^4 + 1080*x^5 +...
The g.f. A = A(x) satisfies the following relations:
A = (1+x)^2/(1-x)^2 * (1+x^2*A)^2/(1-x^2*A)^2 * (1+x^3*A^2)^2/(1-x^3*A^2)^2 *...
A = 1 + 4*x/((1-x)*(1-x*A)) + 4*x^2*(1+x*A)^2/((1-x)*(1-x*A)*(1-x^2*A)*(1-x^2*A^2)) + 4*x^3*(1+x*A)^2*(1+x^2*A^2)^2/((1-x)*(1-x*A)*(1-x^2*A)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x^3*A^3)) +...
-
(* Calculation of constants {d,c}: *) Chop[{1/r, s*Sqrt[(QPochhammer[r, r*s]*(Log[r*s] - 2*QPolyGamma[0, Log[-r]/Log[r*s], r*s] + 2*QPolyGamma[0, Log[r]/Log[r*s], r*s]))/(Pi* Log[r*s]*(QPochhammer[r, r*s] - 4*r*s*(Derivative[0, 1][QPochhammer][r, r*s] - r*Sqrt[s]*Derivative[0, 2][QPochhammer][-r, r*s] + r*s*Derivative[0, 2][QPochhammer][r, r*s])))]} /. FindRoot[{QPochhammer[-r, r*s]^2/QPochhammer[r, r*s]^2 == s, QPochhammer[r, r*s]^2 + 2*r*s*QPochhammer[r, r*s] * Derivative[0, 1][QPochhammer][r, r*s] == 2*r*QPochhammer[-r, r*s] * Derivative[0, 1][QPochhammer][-r, r*s]}, {r, 1/6}, {s, 3}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Jun 30 2025 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(k=0,n,(1+x^(k+1)*A^k)^2/(1-x^(k+1)*(A+x*O(x^n))^k)^2));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*prod(k=0,m-1,(1+x^k*A^k)^2/((1-x^(k+1)*A^k +x*O(x^n))*(1-x^(k+1)*A^(k+1))))));polcoeff(A,n)}
A192620
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))^2/(1 - x^n*A(x))^2.
Original entry on oeis.org
1, 4, 28, 224, 1948, 17928, 171776, 1695872, 17133436, 176297668, 1841222776, 19467629120, 207978652416, 2241618514120, 24345336854400, 266168049520832, 2927074607294300, 32356419163487336, 359330087240388828, 4007079691584624576
Offset: 0
G.f.: A(x) = 1 + 4*x + 28*x^2 + 224*x^3 + 1948*x^4 + 17928*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A)^2/(1-x*A)^2 * (1+x^2*A)^2/(1-x^2*A)^2 * (1+x^3*A)^2/(1-x^3*A)^2 * ...
(1) A = 1 + 4*x*A/((1-x*A)*(1-x)) + 4*x^2*A^2*(1+x)^2/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 4*x^3*A^3*(1+x)^2*(1+x^2)^2/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ...
(2) A^(1/2) = 1 + 2*x*A/(1-x) + 2*x^2*A^2*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^3*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])^2/(1 - x^k*A[x])^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
(* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(r*s^(3/2)*((-1 + s)*Derivative[0, 1][QPochhammer][-s, r] + Sqrt[s]*(1 + s)*Derivative[0, 1][QPochhammer][s, r]))/(2* Pi*(1 + s)*QPochhammer[s, r]* (2* s*((1 + s^2)/(-1 + s^2)^2) + (QPolyGamma[1, Log[-s]/Log[r], r] - QPolyGamma[1, Log[s]/Log[r], r])/ Log[r]^2))]} /. FindRoot[{(-1 + s)^2*(QPochhammer[-s, r]^2/((1 + s)^2*QPochhammer[s, r]^2)) == s, 1 - 4*(s/(-1 + s^2)) + (2*(QPolyGamma[0, Log[-s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]))/Log[r] == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Mar 03 2024 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A)^2/(1-x^k*A+x*O(x^n))^2));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A+x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=(1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))))^2);polcoeff(A,n)}
A192621
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x)^2)/(1 - x^n*A(x)^2).
Original entry on oeis.org
1, 2, 12, 88, 726, 6456, 60392, 585792, 5838764, 59440250, 615431464, 6460681656, 68607630680, 735682014648, 7954732578032, 86635206695808, 949518438959574, 10464751843723840, 115904823140622164, 1289419736206548408, 14401729960605163272
Offset: 0
G.f.: A(x) = 1 + 2*x + 12*x^2 + 88*x^3 + 726*x^4 + 6456*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A^2)/(1-x*A^2) * (1+x^2*A^2)/(1-x^2*A^2) * (1+x^3*A^2)/(1-x^3*A^2) * ...
(1) A = 1 + 2*x*A^2/(1-x) + 2*x^2*A^4*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^6*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A = 1 + 2*x*A^2/((1-x*A^2)*(1-x)) + 2*x^3*A^4*(1+x)/((1-x*A^2)*(1-x^2*A^2)*(1-x)*(1-x^2)) + 2*x^6*A^6*(1+x)*(1+x^2)/((1-x*A^2)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x)*(1-x^2)*(1-x^3)) + ...
(3) A^2 = 1 + 4*x*A^2/((1-x*A^2)*(1-x)) + 4*x^2*A^4*(1+x)^2/((1-x*A^2)*(1-x^2*A^2)*(1-x)*(1-x^2)) + 4*x^3*A^6*(1+x)^2*(1+x^2)^2/((1-x*A^2)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x]^2)/(1 - x^k*A[x]^2), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-s^2, r] / QPochhammer[s^2, r] == s*((1 + s^2)/(1 - s^2)), QPolyGamma[0, Log[-s^2]/Log[r], r] - QPolyGamma[0, Log[s^2]/Log[r], r] == (2*(s^2/(s^4 - 1)) - 1/2) * Log[r]}, {r, 1/12}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A^2)/(1-x^k*A^2+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*A^(2*m)*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A^2 +x*O(x^n))*(1-x^k))))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^(2*m)*prod(k=1,m,(1+x^(k-1))/((1-x^k*A^2 +x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^(2*m)*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))) );polcoeff(A,n)}
A192627
G.f. satisfies: A(x) = Product_{n>=0} (1 + x*(x+x^2)^n)/(1 - x*(x+x^2)^n).
Original entry on oeis.org
1, 2, 4, 10, 22, 48, 104, 222, 466, 966, 1988, 4060, 8222, 16528, 33024, 65620, 129698, 255096, 499508, 974032, 1891866, 3661034, 7060324, 13572010, 26009822, 49701946, 94714606, 180022550, 341316642, 645594510, 1218377230, 2294387492, 4311757732
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 22*x^4 + 48*x^5 + 104*x^6 +...
where the g.f. equals the product:
A(x) = (1+x)/(1-x) * (1+x^2*(1+x))/(1-x^2*(1+x)) * (1+x^3*(1+x)^2)/(1-x^3*(1+x)^2) * (1+x^4*(1+x)^3)/(1-x^4*(1+x)^3) *...
which is also equal to the sum:
A(x) = 1 + 2*x/((1-x)*(1-x*(1+x))) + 2*x^3*(1+x)*(1+x*(1+x))/((1-x)*(1-x*(1+x))*(1-x^2*(1+x))*(1-x^2*(1+x)^2)) + 2*x^6*(1+x)*(1+x*(1+x))*(1 + x^2*(1+x)^2)^2/((1-x)*(1-x*(1+x))*(1-x^2*(1+x))*(1-x^2*(1+x)^2)*(1-x^3*(1+x)^2)*(1-x^3*(1+x)^3)) +...
-
{a(n)=local(A=1+x);A=prod(k=0,n+1,(1+x*(x+x^2)^k)/(1-x*(x+x^2+x*O(x^n))^k));polcoeff(A,n)}
-
{a(n)=local(A=1+x);A=1+sum(m=1,n,x^m*(x+x^2)^(m*(m-1)/2)*prod(k=0,m-1,(1+(x+x^2)^k)/((1-x*(x+x^2)^k +x*O(x^n))*(1-(x+x^2)^(k+1)))));polcoeff(A,n)}
Showing 1-4 of 4 results.
Comments