A192620
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))^2/(1 - x^n*A(x))^2.
Original entry on oeis.org
1, 4, 28, 224, 1948, 17928, 171776, 1695872, 17133436, 176297668, 1841222776, 19467629120, 207978652416, 2241618514120, 24345336854400, 266168049520832, 2927074607294300, 32356419163487336, 359330087240388828, 4007079691584624576
Offset: 0
G.f.: A(x) = 1 + 4*x + 28*x^2 + 224*x^3 + 1948*x^4 + 17928*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A)^2/(1-x*A)^2 * (1+x^2*A)^2/(1-x^2*A)^2 * (1+x^3*A)^2/(1-x^3*A)^2 * ...
(1) A = 1 + 4*x*A/((1-x*A)*(1-x)) + 4*x^2*A^2*(1+x)^2/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 4*x^3*A^3*(1+x)^2*(1+x^2)^2/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ...
(2) A^(1/2) = 1 + 2*x*A/(1-x) + 2*x^2*A^2*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^3*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])^2/(1 - x^k*A[x])^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
(* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(r*s^(3/2)*((-1 + s)*Derivative[0, 1][QPochhammer][-s, r] + Sqrt[s]*(1 + s)*Derivative[0, 1][QPochhammer][s, r]))/(2* Pi*(1 + s)*QPochhammer[s, r]* (2* s*((1 + s^2)/(-1 + s^2)^2) + (QPolyGamma[1, Log[-s]/Log[r], r] - QPolyGamma[1, Log[s]/Log[r], r])/ Log[r]^2))]} /. FindRoot[{(-1 + s)^2*(QPochhammer[-s, r]^2/((1 + s)^2*QPochhammer[s, r]^2)) == s, 1 - 4*(s/(-1 + s^2)) + (2*(QPolyGamma[0, Log[-s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]))/Log[r] == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Mar 03 2024 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A)^2/(1-x^k*A+x*O(x^n))^2));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A+x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=(1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))))^2);polcoeff(A,n)}
A192621
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x)^2)/(1 - x^n*A(x)^2).
Original entry on oeis.org
1, 2, 12, 88, 726, 6456, 60392, 585792, 5838764, 59440250, 615431464, 6460681656, 68607630680, 735682014648, 7954732578032, 86635206695808, 949518438959574, 10464751843723840, 115904823140622164, 1289419736206548408, 14401729960605163272
Offset: 0
G.f.: A(x) = 1 + 2*x + 12*x^2 + 88*x^3 + 726*x^4 + 6456*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A^2)/(1-x*A^2) * (1+x^2*A^2)/(1-x^2*A^2) * (1+x^3*A^2)/(1-x^3*A^2) * ...
(1) A = 1 + 2*x*A^2/(1-x) + 2*x^2*A^4*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^6*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A = 1 + 2*x*A^2/((1-x*A^2)*(1-x)) + 2*x^3*A^4*(1+x)/((1-x*A^2)*(1-x^2*A^2)*(1-x)*(1-x^2)) + 2*x^6*A^6*(1+x)*(1+x^2)/((1-x*A^2)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x)*(1-x^2)*(1-x^3)) + ...
(3) A^2 = 1 + 4*x*A^2/((1-x*A^2)*(1-x)) + 4*x^2*A^4*(1+x)^2/((1-x*A^2)*(1-x^2*A^2)*(1-x)*(1-x^2)) + 4*x^3*A^6*(1+x)^2*(1+x^2)^2/((1-x*A^2)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x]^2)/(1 - x^k*A[x]^2), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-s^2, r] / QPochhammer[s^2, r] == s*((1 + s^2)/(1 - s^2)), QPolyGamma[0, Log[-s^2]/Log[r], r] - QPolyGamma[0, Log[s^2]/Log[r], r] == (2*(s^2/(s^4 - 1)) - 1/2) * Log[r]}, {r, 1/12}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A^2)/(1-x^k*A^2+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*A^(2*m)*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A^2 +x*O(x^n))*(1-x^k))))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^(2*m)*prod(k=1,m,(1+x^(k-1))/((1-x^k*A^2 +x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^(2*m)*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))) );polcoeff(A,n)}
A302171
G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x))^k.
Original entry on oeis.org
1, 1, 4, 14, 54, 213, 880, 3724, 16143, 71227, 319067, 1447160, 6633530, 30682425, 143028870, 671293632, 3169572659, 15044993968, 71752624923, 343658572717, 1652266087698, 7971518032791, 38581202763318, 187269381724629, 911404238805468, 4446493502832481, 21742327471261176
Offset: 0
G.f. A(x) = 1 + x + 4*x^2 + 14*x^3 + 54*x^4 + 213*x^5 + 880*x^6 + 3724*x^7 + 16143*x^8 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x))^2 * (1 - x^3*A(x))^3 * ...).
-
nmax = 30; A[] = 0; Do[A[x] = 1/Product[(1 - x^k*A[x])^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
A190861
G.f. satisfies A(x) = Product_{n>=1} (1 + x^n*A(x))/(1-x^n).
Original entry on oeis.org
1, 2, 6, 18, 56, 178, 580, 1922, 6466, 22022, 75788, 263152, 920768, 3243414, 11492460, 40934616, 146484296, 526389182, 1898722242, 6872300848, 24951521464, 90851221740, 331666951116, 1213729811070, 4451547793956
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 18*x^3 + 56*x^4 + 178*x^5 + 580*x^6 + ...
such that the g.f. satisfies the identity:
A(x) = (1+x*A(x))/(1-x) * (1+x^2*A(x))/(1-x^2) * (1+x^3*A(x))/(1-x^3) * ...
A(x) = 1 + x*(1+A(x))/(1-x) + x^2*(1+A(x))*(1+x*A(x))/((1-x)*(1-x^2)) + x^3*(1+A(x))*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])/(1-x^k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
(* Calculation of constants {d,c}: *) {1/r, Sqrt[-(s*(1 + s)* Log[r]*(s*(1 + s)*QPochhammer[r]^2*(Log[1 - r] + QPolyGamma[0, 1, r]) - r*Log[r]*QPochhammer[-s, r] * Derivative[0, 1][QPochhammer][r, r] + r*Log[r]*QPochhammer[r] * Derivative[0, 1][QPochhammer][-s, r]))/(2*Pi * QPochhammer[r]^2 * (s*Log[r]^2 + (1 + s)^2 * QPolyGamma[1, Log[-s]/Log[r], r]))]} /. FindRoot[{s*(1 + s)*QPochhammer[r] == QPochhammer[-s, r], Log[1 - r] + (1 + 2*s)*Log[r]/(1 + s) + QPolyGamma[0, Log[-s]/Log[r], r] == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
-
{a(n) = my(A=1+x); for(i=1,n, A = prod(m=1,n, (1 + x^m*A)/(1 - x^m +x*O(x^n))));polcoeff(A,n)}
-
{a(n) = my(A=1+x); for(i=1,n, A = 1 + sum(m=1,n, x^m*prod(k=1,m, (1 + x^(k-1)*A)/(1 - x^k +x*O(x^n))))); polcoeff(A,n)}
A192619
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x)^(1/2))^2/(1 - x^n*A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 20, 104, 556, 3048, 17064, 97216, 562036, 3289836, 19461448, 116178600, 699045176, 4235292680, 25816944176, 158223753376, 974389668364, 6026623271840, 37420762694588, 233179517592232, 1457706542138344, 9139698522931008
Offset: 0
G.f.: A(x) = 1 + 4*x + 20*x^2 + 104*x^3 + 556*x^4 + 3048*x^5 +...
The g.f. A = A(x) satisfies:
A = (1+x*A^(1/2))^2/(1-x*A^(1/2))^2 * (1+x^2*A^(1/2))^2/(1-x^2*A^(1/2))^2 * (1+x^3*A^(1/2))^2/(1-x^3*A^(1/2))^2 *...
-
(* Calculation of constants {d,c}: *) Chop[{1/r, (1 - s)*s*Log[r]* Sqrt[(2*r*(QPochhammer[Sqrt[s], r]* Derivative[0, 1][QPochhammer][-Sqrt[s], r] - QPochhammer[-Sqrt[s], r]* Derivative[0, 1][QPochhammer][Sqrt[s], r]))/ (Pi* QPochhammer[s, r^2]*(-2*Sqrt[s]*(1 + s)*Log[r]^2 + (-1 + s)^2* QPolyGamma[1, Log[s]/Log[r^2], r] - (-1 + s)^2* QPolyGamma[1, (2*I*Pi + Log[s])/Log[r^2], r]))]} /. FindRoot[{((-1 + Sqrt[s])^2* QPochhammer[-Sqrt[s], r]^2)/((1 + Sqrt[s])^2* QPochhammer[Sqrt[s], r]^2) == s, (-1 - 2*Sqrt[s] + s)/(-1 + s) + (QPolyGamma[0, Log[-Sqrt[s]]/Log[r], r] - QPolyGamma[0, Log[s]/(2*Log[r]), r])/ Log[r] == 0}, {r, 1/6}, {s, 2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Jun 30 2025 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=prod(m=1, n, (1+x^m*A^(1/2))^2/(1-x^m*A^(1/2)+x*O(x^n))^2));polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=(1+sum(m=1, n, x^m*A^(m/2)*prod(k=1, m,(1+x^(k-1))/(1-x^k+x*O(x^n)))))^2); polcoeff(A, n)}
A209357
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^(n+1)*A(x)) / (1 - x^n).
Original entry on oeis.org
1, 1, 3, 6, 14, 31, 72, 166, 390, 922, 2197, 5273, 12728, 30892, 75327, 184476, 453505, 1118798, 2768843, 6872437, 17103411, 42670102, 106697009, 267359854, 671260241, 1688411587, 4254084396, 10735614274, 27132998096, 68671994940, 174035109012, 441607820562
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 14*x^4 + 31*x^5 + 72*x^6 + 166*x^7 +...
where the g.f. satisfies the identity:
A(x) = (1+x^2*A(x))/(1-x) * (1+x^3*A(x))/(1-x^2) * (1+x^4*A(x))/(1-x^3) *...
A(x) = 1 + x*(1+x*A(x))/(1-x) + x^2*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^3*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) +...
-
(* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(s*(1 + r*s)*Log[r]*(s*(1 + r*s)*(-QPochhammer[r]*(Log[1 - r] + Log[r] + QPolyGamma[0, 1, r]) + r*Log[r]*Derivative[0, 1][QPochhammer][r, r]) - r*Log[r]*Derivative[0, 1][QPochhammer][-r*s, r])) / (2*Pi*QPochhammer[r] * (r*s*Log[r]^2 + (1 + r*s)^2*QPolyGamma[1, Log[-r*s]/Log[r], r]))]} /. FindRoot[{s*(1 + r*s) == QPochhammer[-r*s, r]/QPochhammer[r], Log[1-r] + r*s*Log[r]/(1 + r*s) + QPolyGamma[0, Log[-r*s]/Log[r], r] == -Log[r]}, {r, 2/5}, {s, 2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Jun 10 2025 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=prod(m=1, n, (1+x^(m+1)*A)/(1-x^m+x*O(x^n)))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*prod(k=1, m, (1+x^k*A)/(1-x^k+x*O(x^n))))); polcoeff(A, n)}
for(n=0,35,print1(a(n),", "))
Showing 1-6 of 6 results.
Comments