cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302287 G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x))^k.

Original entry on oeis.org

1, 1, 3, 10, 31, 102, 342, 1167, 4046, 14213, 50464, 180847, 653296, 2376406, 8697194, 32002219, 118322499, 439364380, 1637827543, 6126870808, 22993190147, 86542625565, 326607659370, 1235650643059, 4685502714403, 17804713119018, 67790202024365, 258579199501709, 988012193672223
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 04 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 10*x^3 + 31*x^4 + 102*x^5 + 342*x^6 + 1167*x^7 + 4046*x^8 + 14213*x^9 + 50464*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x))^2 * (1 + x^3*A(x))^3 * (1 + x^4*A(x))^4 * ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 4.01604513838270620496843653760987690323... and c = 2.07544072297996637757124624302382219... - Vaclav Kotesovec, Sep 27 2023
Radius of convergence r = 0.2490011853807768883971843288180859269 = 1/d and A(r) = 3.261386924996517219078267128734843819... satisfy (1) A(r) = 1 / Sum_{n>=1} n*r^n/(1 + r^n*A(r)) and (2) A(r) = Product_{n>=1} (1 + r^n*A(r))^n. - Paul D. Hanna, Mar 02 2024

A302288 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - k*x^k*A(x)).

Original entry on oeis.org

1, 1, 4, 14, 55, 217, 908, 3864, 16894, 75078, 338862, 1548055, 7147427, 33294790, 156305144, 738753341, 3512431392, 16788169689, 80619590577, 388785776751, 1882063496033, 9142361671588, 44550166132194, 217716111661799, 1066792279046783, 5239947708977474, 25795965431819883
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 04 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 14*x^3 + 55*x^4 + 217*x^5 + 908*x^6 + 3864*x^7 + 16894*x^8 + 75078*x^9 + 338862*x^10 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - 2*x^2*A(x)) * (1 - 3*x^3*A(x)) * (1 - 4*x^4*A(x)) * ...).
		

Crossrefs

Showing 1-2 of 2 results.