A192721 The number of pairs of permutations in the product group S_n X S_n with k common descents, n >= 1 and 0 <= k <= n-1.
1, 3, 1, 19, 16, 1, 211, 299, 65, 1, 3651, 7346, 3156, 246, 1, 90921, 237517, 160322, 28722, 917, 1, 3081513, 9903776, 9302567, 2864912, 245407, 3424, 1, 136407699, 520507423, 632274183, 288196659, 46261609, 2041965, 12861, 1
Offset: 1
Examples
The triangle begins n/k|.....0.......1.......2......3....4.....5 ============================================ ..1|.....1 ..2|.....3.......1 ..3|....19......16.......1 ..4|...211.....299......65......1 ..5|..3651....7346....3156....246....1 ..6|.90921..237517..160322..28722..917.....1 .. Row 3 entries T(3,0) = 19, T(3,1) = 16 and T(3,2) = 1 can be read from the following table: ============================================ Number of common descents in S_3 x S_3 ============================================ . ...|.123...132...213...231...312...321 ====================================== 123|..0.....0.....0.....0.....0.....0 132|..0.....1.....0.....1.....0.....1 213|..0.....0.....1.....0.....1.....1 231|..0.....1.....0.....1.....0.....1 312|..0.....0.....1.....0.....1.....1 321|..0.....1.....1.....1.....1.....2 Matrix identity A192721 * A007318 = row reverse of A192722: /...1................\ /..1..............\ |...3.....1...........||..1....1..........| |..19....16.....1.....||..1....2....1.....| |.211...299....65....1||..1....3....3....1| |.....................||..................| = /...1...................\ |...4......1.............| |..36.....18......1......| |.576....432.....68.....1| |........................|
Links
- Alois P. Heinz, Rows n = 1..45, flattened
- L. Carlitz, R. Scoville and T. Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc., 80 (1974), 881-884.
- L. Carlitz, R. Scoville, T. Vaughan, Enumeration of pairs of permutations, Discrete Math. 14, (1976) 215-239.
- J-Marc Fedou and D. Rawlings, More statistics on permutation pairs, The Electronic Journal of Combinatorics, 1 (1994) #R11.
- M. V. Koutras, Eulerian numbers associated with sequences of polynomials, Fibonacci Quart. 32 (1994) 44-57.
- T. Mendes, J. Remmel, A. Riehl, A Generalization of the Generating Functions for Descent Statistic.
- R. P. Stanley, Binomial posets, Möbius inversion and permutation enumeration, J. Combinat. Theory, A 20 (1976), 336-356.
Programs
-
Maple
#A192721 #J = sum {n>=0} z^n/n!^2 J := unapply(BesselJ(0, 2*I*sqrt(z)),z): G := (1-x)/(-x + J(z*(x-1))): Gser := simplify(series(G, z = 0, 12)): for n from 1 to 10 do P[n] := n!^2*sort(coeff(Gser, z, n)) od: for n from 1 to 10 do seq(coeff(P[n],x,k), k = 0..n-1) od; # gives sequence in triangular form
-
Mathematica
max = 9; j[z_] := BesselJ[0, 2 I*Sqrt[z]]; g = (1 - x)/(-x + j[z*(x - 1)]); gser = Series[g, {z, 0, max}]; p[n_] := n!^2 Coefficient[ gser, z, n]; a[n_, k_] := Coefficient[ p[n], x, k]; Flatten[ Table[ a[n, k], {n, 1, max-1}, {k, 0, n-1}]] (* Jean-François Alcover, Dec 13 2011, after Maple *)
Formula
Generating function (Carlitz et al. 1976): Let J(z) = sum {n>=0} z^n/n!^2. Then (1-x)/(J(z*(x-1))-x) = 1 + sum {n>=1} (sum {k = 0..n-1} T(n,k)*x^k)*z^n/n!^2 = 1 + z + (3+x)*z^2/2!^2 + (19+16*x+x^2)*z^3/3!^2 + .... Define a polynomial sequence {p(n,x) }n>=0 by means of the generating function J(z)^x = sum {n>=0} p(n,x)*z^n/n!^2. The generalized Eulerian polynomials associated with the sequence {p(n,x)} as defined by [Koutras, 1994] are the polynomials sum {k = 0..n-1} T(n,k)*x^(n-k).
Relations with other sequences: The first column of the array (x*I-A008459)^-1 (I the identity matrix) is a sequence of rational functions whose numerator polynomials are the row generating polynomials for the present triangle. The change of variable x -> (x+1)/x followed by z -> x*z transforms the above bivariate generating function (1-x)/(J(z*(x-1))-x) into 1/(1+x-x*J(z)), which is the generating function for A192722. Equivalently, if we postmultiply the present triangle by Pascal's triangle A007318 we obtain the row reversed form of A192722: A192721 * A007318 = row reverse of A192722.
Row n sum = n!^2 = A001044(n).
First column [1,3,19,211,3651,...] = A000275 (apart from initial term).
Comments