A192742 Number of matchings in the n-antiprism graph.
3, 15, 51, 191, 708, 2631, 9775, 36319, 134943, 501380, 1862875, 6921503, 25716811, 95550687, 355018116, 1319068095, 4900991135, 18209608887, 67657713855, 251381908996, 934008268531, 3470303209839, 12893894812259, 47907203888767, 177998984624708, 661354367518327, 2457258957728079, 9129933787225743, 33922224882718431, 126037862684586116
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Antiprism Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Index entries for linear recurrences with constant coefficients, signature (3,3,-1,-1).
Crossrefs
Bisection of A073817.
Programs
-
Mathematica
LinearRecurrence[{3, 3, -1, -1}, {3, 15, 51, 191}, 20] Table[RootSum[1 + # - 3 #^2 - 3 #^3 + #^4 &, #^n &], {n, 20}] CoefficientList[Series[(3 + 6 x - 3 x^2 - 4 x^3)/(1 - 3 x - 3 x^2 + x^3 + x^4), {x, 0, 20}], x]
Formula
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
G.f.: -x*(-3-6*x+3*x^2+4*x^3)/(1-3*x-3*x^2+x^3+x^4).
a(n) = A073817(2*n). - Greg Dresden, Jan 27 2021
Comments