cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192745 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 1, 2, 5, 13, 42, 175, 937, 6152, 47409, 416441, 4092650, 44425891, 527520141, 6798966832, 94504778173, 1408978113005, 22426272779178, 379522678988183, 6804322657495361, 128828945745315544, 2568535276579450905, 53788306394034206449
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+n! for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first six polynomials and their reductions are shown here:
1 -> 1
1+x -> 1+x
2+x+x^2 -> 3+2x
6+2x+x^2+x^3 -> 8+5x
24+6x+2x^2+x^4+x^5 -> 29+13x
From those, read A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
		

Crossrefs

Programs

Formula

G.f.: x/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Conjecture: a(n) -n*a(n-1) +(n-2)*a(n-2) +(n-1)*a(n-3)=0. - R. J. Mathar, May 04 2014
a(n) = Sum_{k=0..n} k!*Fibonacci(n-k). - Greg Dresden, Dec 03 2021
a(n) ~ (n-1)!. - Vaclav Kotesovec, Dec 03 2021