A192745 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 2, 5, 13, 42, 175, 937, 6152, 47409, 416441, 4092650, 44425891, 527520141, 6798966832, 94504778173, 1408978113005, 22426272779178, 379522678988183, 6804322657495361, 128828945745315544, 2568535276579450905, 53788306394034206449
Offset: 0
Keywords
Examples
The first six polynomials and their reductions are shown here: 1 -> 1 1+x -> 1+x 2+x+x^2 -> 3+2x 6+2x+x^2+x^3 -> 8+5x 24+6x+2x^2+x^4+x^5 -> 29+13x From those, read A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
Programs
-
Mathematica
(See A192744.)
Formula
G.f.: x/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Conjecture: a(n) -n*a(n-1) +(n-2)*a(n-2) +(n-1)*a(n-3)=0. - R. J. Mathar, May 04 2014
a(n) = Sum_{k=0..n} k!*Fibonacci(n-k). - Greg Dresden, Dec 03 2021
a(n) ~ (n-1)!. - Vaclav Kotesovec, Dec 03 2021
Comments