A192746 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
1, 5, 9, 17, 29, 49, 81, 133, 217, 353, 573, 929, 1505, 2437, 3945, 6385, 10333, 16721, 27057, 43781, 70841, 114625, 185469, 300097, 485569, 785669, 1271241, 2056913, 3328157, 5385073, 8713233, 14098309, 22811545, 36909857, 59721405, 96631265
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Feng-Zhen Zhao, The log-behavior of some sequences related to the generalized Leonardo numbers, Integers (2024) Vol. 24, Art. No. A82.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Programs
-
GAP
List([0..30], n-> 4*Fibonacci(n+2)-3); # G. C. Greubel, Jul 24 2019
-
Magma
[4*Fibonacci(n+2)-3: n in [0..30]]; // G. C. Greubel, Jul 24 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, n_]:= 1; p[n_, x_]:= x*p[n-1, x] +3n +2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192746 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192747 *) (* Clark Kimberling, Jul 09 2011 *) (* Additional programs *) a[0]=1;a[1]=5;a[n_]:=a[n]=a[n-1]+a[n-2]+3;Table[a[n],{n,0,36}] (* Gerry Martens, Jul 04 2015 *) 4*Fibonacci[Range[0,40]+2]-3 (* G. C. Greubel, Jul 24 2019 *)
-
PARI
vector(30, n, n--; 4*fibonacci(n+2)-3) \\ G. C. Greubel, Jul 24 2019
-
Sage
[4*fibonacci(n+2)-3 for n in (0..30)] # G. C. Greubel, Jul 24 2019
Formula
G.f.: (1+3*x-x^2)/((1-x)*(1-x-x^2)), so the first differences are (essentially) A022087. - R. J. Mathar, May 04 2014
a(n) = 4*Fibonacci(n+2)-3. - Gerry Martens, Jul 04 2015
Comments