cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192746 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 5, 9, 17, 29, 49, 81, 133, 217, 353, 573, 929, 1505, 2437, 3945, 6385, 10333, 16721, 27057, 43781, 70841, 114625, 185469, 300097, 485569, 785669, 1271241, 2056913, 3328157, 5385073, 8713233, 14098309, 22811545, 36909857, 59721405, 96631265
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+3n+1 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4*Fibonacci(n+2)-3); # G. C. Greubel, Jul 24 2019
  • Magma
    [4*Fibonacci(n+2)-3: n in [0..30]]; // G. C. Greubel, Jul 24 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 40;
    p[0, n_]:= 1; p[n_, x_]:= x*p[n-1, x] +3n +2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192746 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192747 *) (* Clark Kimberling, Jul 09 2011 *)
    (* Additional programs *)
    a[0]=1;a[1]=5;a[n_]:=a[n]=a[n-1]+a[n-2]+3;Table[a[n],{n,0,36}] (* Gerry Martens, Jul 04 2015 *)
    4*Fibonacci[Range[0,40]+2]-3 (* G. C. Greubel, Jul 24 2019 *)
  • PARI
    vector(30, n, n--; 4*fibonacci(n+2)-3) \\ G. C. Greubel, Jul 24 2019
    
  • Sage
    [4*fibonacci(n+2)-3 for n in (0..30)] # G. C. Greubel, Jul 24 2019
    

Formula

G.f.: (1+3*x-x^2)/((1-x)*(1-x-x^2)), so the first differences are (essentially) A022087. - R. J. Mathar, May 04 2014
a(n) = 4*Fibonacci(n+2)-3. - Gerry Martens, Jul 04 2015