A192744
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 1, 3, 8, 29, 133, 762, 5215, 41257, 369032, 3676209, 40333241, 483094250, 6271446691, 87705811341, 1314473334832, 21017294666173, 357096406209005, 6424799978507178, 122024623087820183, 2439706330834135361, 51219771117454755544
Offset: 0
The first five polynomials and their reductions:
1 -> 1
1+x -> 1+x
2+x+x^2 -> 3+2x
6+2x+x^2+x^3 -> 8+5x
24+6x+2x^2+x^3+x^4 -> 29+13x, so that
A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
-
A192744p := proc(n,x)
option remember;
if n = 0 then
1;
else
x*procname(n-1,x)+n! ;
expand(%) ;
end if;
end proc:
A192744 := proc(n)
local p;
p := A192744p(n,x) ;
while degree(p,x) > 1 do
p := algsubs(x^2=x+1,p) ;
p := expand(p) ;
end do:
coeftayl(p,x=0,0) ;
end proc: # R. J. Mathar, Dec 16 2015
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192744 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192745 *)
A192951
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
0, 1, 3, 9, 20, 40, 74, 131, 225, 379, 630, 1038, 1700, 2773, 4511, 7325, 11880, 19252, 31182, 50487, 81725, 132271, 214058, 346394, 560520, 906985, 1467579, 2374641, 3842300, 6217024, 10059410, 16276523, 26336025, 42612643, 68948766
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> F(n+4)+2*F(n+2)-(3*n+5)); # G. C. Greubel, Jul 12 2019
-
I:=[0, 1, 3, 9]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-1*Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
-
F:=Fibonacci; [F(n+4)+2*F(n+2)-(3*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + 3n - 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A171516 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192951 *)
(* Additional programs *)
LinearRecurrence[{3,-2,-1,1},{0,1,3,9},40] (* Vincenzo Librandi, Nov 16 2011 *)
With[{F=Fibonacci}, Table[F[n+4]+2*F[n+2]-(3*n+5), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,-1,-2,3]^n*[0;1;3;9])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
-
vector(40, n, n--; f=fibonacci; f(n+4)+2*f(n+2)-(3*n+5)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [f(n+4)+2*f(n+2)-(3*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192747
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 1, 6, 15, 32, 61, 110, 191, 324, 541, 894, 1467, 2396, 3901, 6338, 10283, 16668, 27001, 43722, 70779, 114560, 185401, 300026, 485495, 785592, 1271161, 2056830, 3328071, 5384984, 8713141, 14098214, 22811447, 36909756, 59721301, 96631158
Offset: 1
A192952
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
0, 1, 2, 7, 16, 33, 62, 111, 192, 325, 542, 895, 1468, 2397, 3902, 6339, 10284, 16669, 27002, 43723, 70780, 114561, 185402, 300027, 485496, 785593, 1271162, 2056831, 3328072, 5384985, 8713142, 14098215, 22811448, 36909757, 59721302, 96631159
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> 4*F(n+2)-(3*n+4)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [4*F(n+2)-(3*n+4): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + 3n - 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192746 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192952 *)
(* Second program *)
With[{F=Fibonacci}, Table[4*F[n+2]-(3*n+4), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, n--; f=fibonacci; 4*f(n+2)-(3*n+4)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [4*f(n+2)-(3*n+4) for n in (0..40)] # G. C. Greubel, Jul 12 2019
Showing 1-4 of 4 results.
Comments