A192751 Define a pair of sequences c_n, d_n by c_0=0, d_0=1 and thereafter c_n = c_{n-1}+d_{n-1}, d_n = c_{n-1}+4*n+2; sequence here is c_n.
0, 1, 7, 18, 39, 75, 136, 237, 403, 674, 1115, 1831, 2992, 4873, 7919, 12850, 20831, 33747, 54648, 88469, 143195, 231746, 375027, 606863, 981984, 1588945, 2571031, 4160082, 6731223, 10891419, 17622760, 28514301, 46137187, 74651618, 120788939
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
Mathematica
(See A192750.) CoefficientList[Series[x (x^2-4x-1)/((x-1)^2(x^2+x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{3,-2,-1,1},{0,1,7,18},40] (* Harvey P. Dale, Feb 23 2022 *)
Formula
G.f.: x*(x^2-4*x-1)/((x-1)^2*(x^2+x-1)). First differences are in A192750. [Colin Barker, Nov 13 2012]
a(n) = 5*Fibonacci(n+3) - (4*n+10). - N. J. A. Sloane, Dec 15 2015
Extensions
Description corrected by Antti Karttunen, Dec 15 2015
Entry revised by N. J. A. Sloane, Dec 15 2015
Comments