cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192754 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 6, 12, 23, 40, 68, 113, 186, 304, 495, 804, 1304, 2113, 3422, 5540, 8967, 14512, 23484, 38001, 61490, 99496, 160991, 260492, 421488, 681985, 1103478, 1785468, 2888951, 4674424, 7563380, 12237809, 19801194, 32039008, 51840207, 83879220, 135719432
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*p(n-1,x)+5*n+1 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.

Crossrefs

Programs

  • Mathematica
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n + 1;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192754 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192755 *)
    LinearRecurrence[{2, 0, -1}, {1, 6, 12}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)

Formula

Conjecture: G.f.: ( 1+4*x ) / ( (x-1)*(x^2+x-1) ), partial sums of A022095. a(n) = A000071(n+3)+4*A000071(n+2). - R. J. Mathar, May 04 2014
a(n) = 8*Fibonacci(n) + 3*Lucas(n) - 5. - Greg Dresden, Oct 10 2020