A192770 Numbers k such that k^2 + 1 is divisible by precisely four distinct primes where the sum of the largest and the smallest is equal to the sum of the other two.
948, 1560, 1772, 13236, 36984, 40452, 94536, 100512, 127224, 425808, 757382, 850416, 875784, 1241106, 2102736, 3343164, 4361808, 4530480, 5401464, 8006700, 8645004, 9806604, 10379136, 10829580, 11366424, 11692746, 13960260
Offset: 1
Keywords
Examples
1772 is in the sequence because 1772^2+1 = 5 * 17^2 * 41 * 53 and 5 + 53 = 17 + 41.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..80 (terms below 10^9)
Programs
-
Maple
with(numtheory):for n from 1 to 100000 do:x:=n^2+1:y:=factorset(x):n1:=nops(y):if n1=4 and y[4] + y[1] = y[2]+y[3] then printf ( "%d %d \n",n,x):else fi:od:
-
Mathematica
seqQ[n_] := Module[{p = FactorInteger[n^2 + 1][[;;,1]]}, Length[p] == 4 && p[[1]] + p[[4]] == p[[2]] + p[[3]]]; Select[Range[10^6], seqQ] (* Amiram Eldar, Jan 15 2020 *)
-
PARI
is(n)=my(f=factor(n^2+1)[,1]);#f==4&&f[1]+f[4]==f[2]+f[3] forstep(n=2,1e7,2,if(is(n),print1(n", "))) \\ Charles R Greathouse IV, Jul 11 2011
Extensions
a(10)-a(27) from Charles R Greathouse IV, Jul 11 2011