cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192771 Numbers k such that k^2 + 1 is divisible by precisely five distinct primes where the sum of the largest and the smallest is equal to the sum of the other three.

Original entry on oeis.org

2153, 2697, 8487, 11293, 12553, 18065, 32247, 43999, 55945, 107607, 134223, 214641, 218783, 366937, 429855, 595471, 620865, 645327, 1330849, 1363977, 1387689, 1532465, 1557535, 1631191, 1716663, 1778711, 2156031, 3166415, 3857215, 4546071
Offset: 1

Views

Author

Michel Lagneau, Jul 09 2011

Keywords

Examples

			11293 is in the sequence because 11293^2+1 = 2 * 5 ^ 2 * 29 * 281 * 313 and 313 + 2 = 5 + 29 + 281 = 315.
		

Crossrefs

Programs

  • Maple
    isA192771 := proc(n) local p,s1,n2 ; n2 := n^2+1 ; if A001221(n2) = 5 then p := numtheory[factorset](n2) ; s1 := max(op(p)) + min( op(p)) ; evalb( add(k,k=p) = 2*s1 ) ; else false; end if; end proc:
    for n from 1 do if isA192771(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Jul 11 2011
  • Mathematica
    seqQ[n_] := Module[{p = FactorInteger[n^2 + 1][[;;,1]]}, Length[p] == 5 && p[[1]] + p[[5]] == p[[2]] + p[[3]] + p[[4]]]; Select[Range[10^6], seqQ] (* Amiram Eldar, Jan 15 2020 *)
  • PARI
    for(k=1,5000000,my(f=factor(k^2+1));if(#f[,2]==5,if(f[1,1]+f[5,1]==f[2,1]+f[3,1]+f[4,1],print1(k,", ")))) \\ Hugo Pfoertner, Jan 08 2020

Extensions

a(17) and beyond from Lukas Naatz, Jan 08 2020

A199924 Numbers k such that the sum of the largest and the smallest prime divisor of k^2 + 1 equals the sum of the other distinct prime divisors.

Original entry on oeis.org

948, 1560, 1772, 2153, 2697, 8487, 11293, 12553, 13236, 18065, 32247, 36984, 40452, 43999, 55945, 94536, 100512, 107607, 127224, 134223, 214641, 218783, 366937, 425808, 429855, 595471, 620865, 645327, 757382, 850416, 875784, 1241106, 1330849, 1363977, 1387689
Offset: 1

Views

Author

Michel Lagneau, Nov 12 2011

Keywords

Comments

Generalization of A192770 and A192771.

Examples

			2697 is in the sequence because 2697^2 + 1 = 7273810 has five distinct divisors  2, 5, 41, 113, 157 and 157 + 2 = 5 + 41 + 113 = 159.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1400000],Plus@@((pl=First/@FactorInteger[#^2+1])/2)==pl[[1]]+pl[[-1]]&](* program of Ray Chandler adapted for this sequence - see A199745 *)
Showing 1-2 of 2 results.