cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192771 Numbers k such that k^2 + 1 is divisible by precisely five distinct primes where the sum of the largest and the smallest is equal to the sum of the other three.

Original entry on oeis.org

2153, 2697, 8487, 11293, 12553, 18065, 32247, 43999, 55945, 107607, 134223, 214641, 218783, 366937, 429855, 595471, 620865, 645327, 1330849, 1363977, 1387689, 1532465, 1557535, 1631191, 1716663, 1778711, 2156031, 3166415, 3857215, 4546071
Offset: 1

Views

Author

Michel Lagneau, Jul 09 2011

Keywords

Examples

			11293 is in the sequence because 11293^2+1 = 2 * 5 ^ 2 * 29 * 281 * 313 and 313 + 2 = 5 + 29 + 281 = 315.
		

Crossrefs

Programs

  • Maple
    isA192771 := proc(n) local p,s1,n2 ; n2 := n^2+1 ; if A001221(n2) = 5 then p := numtheory[factorset](n2) ; s1 := max(op(p)) + min( op(p)) ; evalb( add(k,k=p) = 2*s1 ) ; else false; end if; end proc:
    for n from 1 do if isA192771(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Jul 11 2011
  • Mathematica
    seqQ[n_] := Module[{p = FactorInteger[n^2 + 1][[;;,1]]}, Length[p] == 5 && p[[1]] + p[[5]] == p[[2]] + p[[3]] + p[[4]]]; Select[Range[10^6], seqQ] (* Amiram Eldar, Jan 15 2020 *)
  • PARI
    for(k=1,5000000,my(f=factor(k^2+1));if(#f[,2]==5,if(f[1,1]+f[5,1]==f[2,1]+f[3,1]+f[4,1],print1(k,", ")))) \\ Hugo Pfoertner, Jan 08 2020

Extensions

a(17) and beyond from Lukas Naatz, Jan 08 2020