A192809 Coefficient of x in the reduction of the polynomial (x^2 + 2)^n by x^3 -> x^2 + 2.
0, 0, 2, 14, 74, 366, 1786, 8702, 42410, 206734, 1007834, 4913310, 23953034, 116774190, 569289402, 2775359806, 13530239338, 65961672910, 321571716762, 1567703857118, 7642759781962, 37259445922414, 181644634930298, 885541171698814
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-12,8).
Programs
-
GAP
a:=[0,0,2];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!( 2*x^2/(1-7*x+12*x^2-8*x^3) )); // G. C. Greubel, Jan 02 2019 -
Mathematica
(See A192808.) LinearRecurrence[{7,-12,8}, {0,0,2}, 30] (* G. C. Greubel, Jan 02 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0,0], Vec(2*x^2/(1-7*x+12*x^2-8*x^3))) \\ G. C. Greubel, Jan 02 2019
-
Sage
(2*x^2/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
Formula
a(n) = 7*a(n-1) - 12*a(n-2) + 8*a(n-3).
a(n) = 2*A192811(n).
G.f.: 2*x^2/(1-7*x+12*x^2-8*x^3). - Colin Barker, Jul 26 2012
Comments