cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192814 Constant term in the reduction of the polynomial (2*x+1)^n by x^3 -> x^2 + x + 1. See Comments.

Original entry on oeis.org

1, 1, 1, 9, 49, 225, 1041, 4873, 22817, 106753, 499425, 2336585, 10931921, 51145825, 239289457, 1119533257, 5237818689, 24505519873, 114650876097, 536402551689, 2509598769265, 11741342323937, 54932733173713, 257006830281609
Offset: 0

Views

Author

Clark Kimberling, Jul 10 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Crossrefs

Programs

  • GAP
    a:=[1,1,1];; for n in [4..25] do a[n]:=5*a[n-1]-3*a[n-2]+7*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 03 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-4*x-x^2)/(1-5*x+3*x^2-7*x^3) )); // G. C. Greubel, Jan 03 2019
    
  • Maple
    seq(coeff(series((1-4*x-x^2)/(1-5*x+3*x^2-7*x^3),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Jan 03 2019
  • Mathematica
    q = x^3; s = x^2 + x + 1; z = 40;
    p[n_, x_] := (2 x + 1)^n;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192814 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192815 *)
    u2 = u2/2  (* A192816 *)
    LinearRecurrence[{5,-3,7}, {1,1,1}, 30] (* G. C. Greubel, Jan 03 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x-x^2)/(1-5*x+3*x^2-7*x^3)) \\ G. C. Greubel, Jan 03 2019
    
  • Sage
    ((1-4*x-x^2)/(1-5*x+3*x^2-7*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 03 2019
    

Formula

a(n) = 5*a(n-1) - 3*a(n-2) + 7*a(n-3).
G.f.: (1 -4*x -x^2) / (1 -5*x +3*x^2 -7*x^3). - R. J. Mathar, May 06 2014