A192816 a(n) = A192815(n)/2.
0, 1, 2, 7, 36, 173, 806, 3763, 17608, 82393, 385482, 1803487, 8437740, 39476613, 184694254, 864105611, 4042781584, 18914450865, 88492648850, 414019362743, 1937020023220, 9062490569821, 42399528318646, 198369310046307, 928085399264344
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (5,-3,7).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-3*x)/(1-5*x+3*x^2-7*x^3) )); // G. C. Greubel, Jan 03 2019 -
Mathematica
(* See A192814. *) LinearRecurrence[{5,-3,7}, {0,1,2}, 30] (* G. C. Greubel, Jan 03 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(1-3*x)/(1-5*x+3*x^2-7*x^3))) \\ G. C. Greubel, Jan 03 2019
-
Sage
(x*(1-3*x)/(1-5*x+3*x^2-7*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 03 2019
Formula
a(n) = 5*a(n-1) - 3*a(n-2) + 7*a(n-3).
G.f.: x*(1-3*x)/(1-5*x+3*x^2-7*x^3). - Bruno Berselli, Jul 11 2011