cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192832 Molecular topological indices of the lattice graphs.

Original entry on oeis.org

0, 48, 576, 2880, 9600, 25200, 56448, 112896, 207360, 356400, 580800, 906048, 1362816, 1987440, 2822400, 3916800, 5326848, 7116336, 9357120, 12129600, 15523200, 19636848, 24579456, 30470400, 37440000, 45630000, 55194048, 66298176, 79121280, 93855600
Offset: 1

Views

Author

Eric W. Weisstein, Jul 11 2011

Keywords

Comments

Lattice graphs are defined for n>=2; extended to n=1 using closed form.

Programs

  • GAP
    List([0..30], n -> 4*n^2*(n+1)*(n-1)^2); # G. C. Greubel, Jan 04 2019
  • Magma
    [4*n^2*(n+1)*(n-1)^2: n in [1..30]]; // G. C. Greubel, Jan 04 2019
    
  • Mathematica
    Table[4*n^2*(n+1)*(n-1)^2, {n,1,30}] (* G. C. Greubel, Jan 04 2019 *)
  • PARI
    vector(30, n, 4*n^2*(n+1)*(n-1)^2) \\ G. C. Greubel, Jan 04 2019
    
  • Sage
    [4*n^2*(n+1)*(n-1)^2 for n in (1..30)] # G. C. Greubel, Jan 04 2019
    

Formula

a(n) = 4*n^2*(n+1)*(n-1)^2.
a(n) = 48*A004302(n).
G.f.: 48*x^2*(1+6*x+3*x^2)/(1-x)^6. - Colin Barker, Aug 07 2012
E.g.f.: 4*x^2*(6 +18*x +9*x^2 +x^3)*exp(x). - G. C. Greubel, Jan 04 2019