A192832 Molecular topological indices of the lattice graphs.
0, 48, 576, 2880, 9600, 25200, 56448, 112896, 207360, 356400, 580800, 906048, 1362816, 1987440, 2822400, 3916800, 5326848, 7116336, 9357120, 12129600, 15523200, 19636848, 24579456, 30470400, 37440000, 45630000, 55194048, 66298176, 79121280, 93855600
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Lattice Graph
- Eric Weisstein's World of Mathematics, Molecular Topological Index
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([0..30], n -> 4*n^2*(n+1)*(n-1)^2); # G. C. Greubel, Jan 04 2019
-
Magma
[4*n^2*(n+1)*(n-1)^2: n in [1..30]]; // G. C. Greubel, Jan 04 2019
-
Mathematica
Table[4*n^2*(n+1)*(n-1)^2, {n,1,30}] (* G. C. Greubel, Jan 04 2019 *)
-
PARI
vector(30, n, 4*n^2*(n+1)*(n-1)^2) \\ G. C. Greubel, Jan 04 2019
-
Sage
[4*n^2*(n+1)*(n-1)^2 for n in (1..30)] # G. C. Greubel, Jan 04 2019
Formula
a(n) = 4*n^2*(n+1)*(n-1)^2.
a(n) = 48*A004302(n).
G.f.: 48*x^2*(1+6*x+3*x^2)/(1-x)^6. - Colin Barker, Aug 07 2012
E.g.f.: 4*x^2*(6 +18*x +9*x^2 +x^3)*exp(x). - G. C. Greubel, Jan 04 2019
Comments