cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192835 Molecular topological indices of the odd graphs.

Original entry on oeis.org

0, 24, 540, 12040, 258300, 5258484, 102834732, 1948929840, 36099037260, 656717973340, 11782163004612, 208991112900024, 3673025551895700, 64051241252342400, 1109647124772841800, 19114937411113617120, 327669959548309223340, 5592728044559732561100
Offset: 1

Views

Author

Eric W. Weisstein, Jul 11 2011

Keywords

Comments

The n-odd graph is a vertex transitive graph. The number of nodes at distance k from a specified node for k in 1..n-1 is given by A088459(n,k). Ignore the second half of each row (k>=n). - Andrew Howroyd, May 11 2017

Crossrefs

Cf. A088459.

Programs

  • Mathematica
    b[n_] := Sum[Binomial[n-1, i]*Binomial[n, i]*Min[2*i, 2*(n-i)-1], {i, 1, n - 1}];
    a[1] = 0; a[n_] := Binomial[2*n - 1, n]*n*(n + b[n]);
    Array[a, 18] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
  • PARI
    b(n)=sum(i=1,n-1,binomial(n-1,i)*binomial(n,i)*min(2*i,2*(n-i)-1));
    a(n)=if(n<2,0,binomial(2*n-1,n)*n*(n+b(n))); \\ Andrew Howroyd, May 11 2017

Formula

a(n) = binomial(2*n-1, n)*n * (n + Sum_{k=1..n-1} k*A088459(n,k)) for n>1. - Andrew Howroyd, May 11 2017

Extensions

a(8)-a(18) from Andrew Howroyd, May 11 2017