A192851 Integers n such that 6n, 36n, and 216n fall between pairs of twin primes, that is, 6n-1, 6n+1, 36n-1, 36n+1, 216n-1, and 216n+1 are prime.
2, 12, 23, 45, 325, 703, 2705, 3598, 4218, 7338, 10698, 13562, 16478, 16665, 20195, 25195, 29678, 32312, 36228, 51882, 79628, 83522, 84513, 84525, 89453, 100028, 106710, 107712, 108868, 114527, 119142, 145590, 147758, 151557, 167155, 173960, 190547, 192588
Offset: 1
Keywords
Examples
12 is in the list because 12*6=72, 12*36=432, 12*216=2592 are all between a pair of twin primes (71,73 and 431,433 and 2591,2593).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[1000000], PrimeQ[6 # - 1] && PrimeQ[6 # + 1] && PrimeQ[36 # - 1] && PrimeQ[36 # + 1] && PrimeQ[216 # - 1] && PrimeQ[216 # + 1] &] (* T. D. Noe, Jul 26 2011 *) Select[Range[193000],AllTrue[{6#-1,6#+1,36#-1,36#+1,216#-1,216#+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 21 2020 *)
-
PARI
is(n)=isprime(6*n-1) && isprime(6*n+1) && isprime(36*n-1) && isprime(36*n+1) && isprime(216*n-1) && isprime(216*n+1) \\ Charles R Greathouse IV, Sep 15 2015
Comments