A192871 Number of n-step prudent self-avoiding walks on honeycomb lattice.
1, 3, 6, 12, 24, 48, 90, 168, 318, 594, 1092, 2004, 3678, 6720, 12210, 22128, 40074, 72372, 130380, 234432, 421128, 755208, 1352328, 2418246, 4320552, 7709898, 13744764, 24477618, 43560444, 77448330, 137602440, 244277016, 433399824, 768379830, 1361530134
Offset: 0
Examples
This 8-step prudent self-avoiding walk on honeycomb lattice from (S) to (E) is not reversible: . o...o o...o . . . . . . o...o 4---3 o . . . / \ . . o 6---5 2...o . . / . / . . o...7 (S)--1 o . . \ . . . . o (E)..o o...o . . . . . . o...o o...0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..110
- Mireille Bousquet-Mélou, Families of prudent self-avoiding walks, DMTCS proc. AJ, 2008, 167-180.
- Mireille Bousquet-Mélou, Families of prudent self-avoiding walks, arXiv:0804.4843 [math.CO], 2008-2009.
- Enrica Duchi, On some classes of prudent walks, in: FPSAC'05, Taormina, Italy, 2005.
Programs
-
Maple
i:= n-> max(n, 0)+1: d:= n-> max(n-1, -1): b:= proc(n, x, y, z, u, v, w) option remember; `if`(n=0, 1, `if`(x>y, b(n, y, x, w, v, u, z), `if`(min(y, z)<=0 or x=-1, b(n-1, d(y), d(z), u, i(v), i(w), x), 0)+ `if`(min(w, x)<=0 or y=-1, b(n-1, d(w), d(x), y, i(z), i(u), v), 0))) end: a:= n-> `if`(n<2, 1 +2*n, 6*b(n-2, -1, -1, 1, 2, 1, -1)): seq(a(n), n=0..20);
-
Mathematica
i[n_] := Max[n, 0] + 1; d[n_] := Max[n - 1, -1]; b[n_, x_, y_, z_, u_, v_, w_] := b[n, x, y, z, u, v, w] = If[n == 0, 1, If[x > y, b[n, y, x, w, v, u, z], If[Min[y, z] <= 0 || x == -1, b[n - 1, d[y], d[z], u, i[v], i[w], x], 0] + If[Min[w, x] <= 0 || y == -1, b[n - 1, d[w], d[x], y, i[z], i[u], v], 0]]]; a[n_] := If[n < 2, 1 + 2 n, 6 b[n - 2, -1, -1, 1, 2, 1, -1]]; a /@ Range[0, 34] (* Jean-François Alcover, Sep 22 2019, after Alois P. Heinz *)
Comments