A192872 Constant term in the reduction by (x^2 -> x+1) of the polynomial p(n,x) given in Comments.
1, 0, 3, 4, 13, 30, 81, 208, 547, 1428, 3741, 9790, 25633, 67104, 175683, 459940, 1204141, 3152478, 8253297, 21607408, 56568931, 148099380, 387729213, 1015088254, 2657535553, 6957518400
Offset: 0
Examples
The coefficients in all the polynomials p(n,x) are Fibonacci numbers (A000045). The first six and their reductions: p(0,x) = 1 -> 1 p(1,x) = x -> x p(2,x) = 1 + 2*x^2 -> 3 + 2*x p(3,x) = 1 + x + 3*x^3 -> 4 + 7*x p(4,x) = 1 + x + 2*x^2 + 5*x^4 -> 13 + 18*x p(5,x) = 1 + x + 2*x^2 + 3*x^3 + 8*x^5 -> 30 + 49*x
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-3,1).
Programs
-
GAP
a:=[1,0,3,4];; for n in [5..30] do a[n]:=3*a[n-1]-3*a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 06 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (2*x-1)*(x^2-x+1)/((x-1)*(1+x)*(x^2-3*x +1)) )); // G. C. Greubel, Jan 06 2019 -
Mathematica
(* First program *) q = x^2; s = x + 1; z = 26; p[0, x_] := 1; p[1, x_] := x; p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2 + 1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192872 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192873 *) (* End of 1st program *) (* ******************************************** *) (* Second program: much more general *) (* u = 1; v = 1; a = 1; b = 1; c = 0; d = 1; e = 1; f = 1; Nine degrees of freedom for user; shown values generate A192872. *) q = x^2; s = u*x + v; z = 11; (* will apply reduction (x^2 -> u*x+v) to p(n,x) *) p[0, x_] := a; p[1, x_] := b*x + c; (* initial values of polynomial sequence p(n,x) *) p[n_, x_] := d*x*p[n - 1, x] + e*(x^2)*p[n - 2, x] + f; (* recurrence for p(n,x) *) Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]; u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]; Simplify[FindLinearRecurrence[u1]] (* for 0-sequence *) Simplify[FindLinearRecurrence[u2]] (* for 1-sequence *) u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, 4}] (* initial values for 0-sequence *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, 4}] (* initial values for 1-sequence *) LinearRecurrence[{3,0,-3,1},{1,0,3,4},26] (* Ray Chandler, Aug 02 2015 *)
-
PARI
my(x='x+O('x^30)); Vec((2*x-1)*(x^2-x+1)/((x-1)*(1+x)*(x^2-3*x +1))) \\ G. C. Greubel, Jan 06 2019
-
Sage
((2*x-1)*(x^2-x+1)/((x-1)*(1+x)*(x^2-3*x +1))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 06 2019
Formula
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4).
G.f.: (2*x-1)*(x^2-x+1) / ( (x-1)*(1+x)*(x^2-3*x+1) ). - R. J. Mathar, Oct 26 2011
Comments