cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192878 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.

Original entry on oeis.org

3, 0, 4, 5, 18, 42, 115, 296, 780, 2037, 5338, 13970, 36579, 95760, 250708, 656357, 1718370, 4498746, 11777875, 30834872, 80726748, 211345365, 553309354, 1448582690, 3792438723, 9928733472, 25993761700, 68052551621, 178163893170, 466439127882, 1221153490483
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2011

Keywords

Comments

The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x + 1, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.
For n>0, also the coefficient of x in the reduction x^2 -> x + 1 of the polynomial A000285(n-1)*x^(n-1). - R. J. Mathar, Jul 12 2011

Examples

			The first six polynomials and reductions:
p(0,x) = 3 -> 3
p(1,x) = x -> x
p(2,x) = 4*x^2 -> 4 + 4*x
p(3,x) = 5*x^3 -> 5 + 10*x
p(4,x) = 9*x^4 -> 18 + 27*x
p(5,x) = 14*x^5 -> 42 + 27*x
In general, p(n,x) = A104449(n)*x^n -> A192878(n) + A192879(n)*x.
		

Crossrefs

Programs

  • GAP
    a:=[3,0,4];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 08 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3-2*x^2-6*x)/((1+x)*(x^2-3*x+1)) )); // G. C. Greubel, Jan 08 2019
    
  • Mathematica
    q = x^2; s = x + 1; z = 25;
    p[0, x_] := 3; p[1, x_] := x;
    p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]  (* A192878 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]  (* A192879 *)
    FindLinearRecurrence[u1]
    FindLinearRecurrence[u2]
    LinearRecurrence[{2,2,-1}, {3,0,4}, 30] (* G. C. Greubel, Jan 08 2019 *)
  • PARI
    a(n) = round((2^(-n)*(7*(-2)^n-(-4+sqrt(5))*(3+sqrt(5))^n+(3-sqrt(5))^n*(4+sqrt(5))))/5) \\ Colin Barker, Sep 29 2016
    
  • PARI
    Vec((3-2*x^2-6*x)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Sep 29 2016
    
  • Sage
    ((3-2*x^2-6*x)/((1+x)*(x^2-3*x+1))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: ( 3 - 2*x^2 - 6*x ) / ( (1+x)*(1 - 3*x + x^2) ). - R. J. Mathar, May 07 2014
a(n) = (2^(-n)*(7*(-2)^n - (-4+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(4+sqrt(5))))/5. - Colin Barker, Sep 29 2016