A192914
Constant term in the reduction by (x^2 -> x + 1) of the polynomial C(n)*x^n, where C=A000285.
Original entry on oeis.org
1, 0, 5, 9, 28, 69, 185, 480, 1261, 3297, 8636, 22605, 59185, 154944, 405653, 1062009, 2780380, 7279125, 19057001, 49891872, 130618621, 341963985, 895273340, 2343856029, 6136294753, 16065028224, 42058789925, 110111341545, 288275234716, 754714362597
Offset: 0
-
F:=Fibonacci; List([0..30], n -> F(n+1)^2 +F(n)*F(n-3)); # G. C. Greubel, Jan 12 2019
-
F:=Fibonacci; [F(n+1)^2+F(n)*F(n-3): n in [0..30]]; // Bruno Berselli, Feb 15 2017
-
q = x^2; s = x + 1; z = 28;
p[0, x_]:= 1; p[1, x_]:= 4 x;
p[n_, x_] := p[n-1, x]*x + p[n-2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *)
LinearRecurrence[{2,2,-1}, {1,0,5}, 30] (* or *) With[{F:= Fibonacci}, Table[F[n+1]^2 +F[n]*F[n-3], {n, 0, 30}]] (* G. C. Greubel, Jan 12 2019 *)
-
a(n) = round((2^(-1-n)*(3*(-1)^n*2^(2+n)+(3+sqrt(5))^n*(-1+3*sqrt(5))-(3-sqrt(5))^n*(1+3*sqrt(5))))/5) \\ Colin Barker, Sep 29 2016
-
Vec((1+3*x^2-2*x)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Sep 29 2016
-
{f=fibonacci}; vector(30, n, n--; f(n+1)^2 +f(n)*f(n-3)) \\ G. C. Greubel, Jan 12 2019
-
f=fibonacci; [f(n+1)^2 +f(n)*f(n-3) for n in (0..30)] # G. C. Greubel, Jan 12 2019
A192879
Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.
Original entry on oeis.org
0, 1, 4, 10, 27, 70, 184, 481, 1260, 3298, 8635, 22606, 59184, 154945, 405652, 1062010, 2780379, 7279126, 19057000, 49891873, 130618620, 341963986, 895273339, 2343856030, 6136294752, 16065028225, 42058789924, 110111341546, 288275234715, 754714362598
Offset: 0
The first six polynomials and reductions:
p(0,x) = 3 -> 3
p(1,x) = x -> x
p(2,x) = 4*x^2 -> 4+4*x
p(3,x) = 5*x^3 -> 5+10*x
p(4,x) = 9*x^4 -> 18+27*x
p(5,x) = 14*x^5 -> 42+27*x
In general, p(n,x) = (A104449(n))*x^n -> A192878(n) + A192879(n)*x.
-
a:=[0,1,4];; for n in [4..40] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 07 2019
-
I:=[0,1,4]; [n le 3 select I[n] else 2*Self(n-1) +2*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Jan 07 2019
-
with(combinat); seq( fibonacci(2*n) + fibonacci(n)*fibonacci(n-1), n=0..40); # G. C. Greubel, Feb 13 2020
-
(See A192878.)
LinearRecurrence[{2,2,-1}, {0,1,4}, 30] (* G. C. Greubel, Jan 07 2019 *)
a[n_] := a[n] = 2*a[n-1]+2*a[n - 2]-a[n-3]; a[0] = 0; a[1]=1; a[2]=4; Table[a[n], {n,0,40}] (* Rigoberto Florez, Feb 06 2020 *)
Table[Fibonacci[n]*Fibonacci[n-1]+Fibonacci[2n], {n,0,40}] (* Rigoberto Florez, Feb 06 2020 *)
-
a(n) = round((2^(-1-n)*((-1)^n*2^(1+n)+(3+sqrt(5))^n*(-1+3*sqrt(5))-(3-sqrt(5))^n*(1+3*sqrt(5))))/5) \\ Colin Barker, Sep 29 2016
-
concat(0, Vec(x*(1+2*x)/((1+x)*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Sep 29 2016
-
(x*(1+2*x)/((1+x)*(1-3*x+x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 07 2019
A192916
Constant term in the reduction by (x^2 -> x+1) of the polynomial C(n)*x^n, where C=A022095.
Original entry on oeis.org
1, 0, 6, 11, 34, 84, 225, 584, 1534, 4011, 10506, 27500, 72001, 188496, 493494, 1291979, 3382450, 8855364, 23183649, 60695576, 158903086, 416013675, 1089137946, 2851400156, 7465062529, 19543787424, 51166299750, 133955111819, 350699035714, 918141995316
Offset: 0
-
F:=Fibonacci;; List([0..30], n-> F(2*n) +2*F(n)*F(n-1) +(-1)^n); # G. C. Greubel, Jul 28 2019
-
F:=Fibonacci; [F(2*n) +2*F(n)*F(n-1) +(-1)^n: n in [0..30]]; // G. C. Greubel, Jul 28 2019
-
(* First program *)
q = x^2; s = x + 1; z = 28;
p[0, x_]:= 1; p[1, x_]:= 5 x;
p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *)
(* Second program *)
With[{F=Fibonacci}, Table[F[2*n] +2*F[n]*F[n-1] +(-1)^n, {n,0,30}]] (* G. C. Greubel, Jul 28 2019 *)
-
a(n) = round((2^(-n)*(7*(-2)^n+(3+sqrt(5))^n*(-1+2*sqrt(5))-(3-sqrt(5))^n*(1+2*sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
-
Vec((1+4*x^2-2*x)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Oct 01 2016
-
vector(30, n, n--; f=fibonacci; f(2*n) +2*f(n)*f(n-1) +(-1)^n) \\ G. C. Greubel, Jul 28 2019
-
f=fibonacci; [f(2*n) +2*f(n)*f(n-1) +(-1)^n for n in (0..30)] # G. C. Greubel, Jul 28 2019
A192917
Coefficient of x in the reduction by (x^2 -> x+1) of the polynomial C(n)*x^n, where C=A022095.
Original entry on oeis.org
0, 5, 6, 22, 51, 140, 360, 949, 2478, 6494, 16995, 44500, 116496, 304997, 798486, 2090470, 5472915, 14328284, 37511928, 98207509, 257110590, 673124270, 1762262211, 4613662372, 12078724896, 31622512325, 82788812070, 216743923894, 567442959603, 1485584954924
Offset: 0
-
F:=Fibonacci;; List([0..30], n-> F(2*n+1) +2*F(n)^2 -(-1)^n); # G. C. Greubel, Jul 29 2019
-
F:=Fibonacci; [F(2*n+1) +2*F(n)^2 -(-1)^n: n in [0..30]]; // G. C. Greubel, Jul 29 2019
-
(* First program *)
q = x^2; s = x + 1; z = 28;
p[0, x_]:= 1; p[1, x_]:= 5 x;
p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *)
(* Second program *)
With[{F=Fibonacci}, Table[F[2*n+1] +2*F[n]^2 -(-1)^n, {n,0,30}]] (* G. C. Greubel, Jul 28 2019 *)
-
a(n) = round((2^(-1-n)*(-9*(-1)^n*2^(1+n)-(3-sqrt(5))^n*(-9+sqrt(5))+(3+sqrt(5))^n*(9+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
-
concat(0, Vec((-x*(-5+4*x))/((1+x)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Oct 01 2016
-
vector(30, n, n--; f=fibonacci; f(2*n+1) +2*f(n)^2 -(-1)^n) \\ G. C. Greubel, Jul 29 2019
-
f=fibonacci; [f(2*n+1) +2*f(n)^2 -(-1)^n for n in (0..30)] # G. C. Greubel, Jul 29 2019
Showing 1-4 of 4 results.
Comments