A099016
a(n) = 3*L(2*n)/5 - (-1)^n/5, where L = A000032.
Original entry on oeis.org
1, 2, 4, 11, 28, 74, 193, 506, 1324, 3467, 9076, 23762, 62209, 162866, 426388, 1116299, 2922508, 7651226, 20031169, 52442282, 137295676, 359444747, 941038564, 2463670946, 6449974273, 16886251874, 44208781348, 115740092171
Offset: 0
-
[3*Lucas(2*n)/5-(-1)^n/5: n in [0..35]]; // Vincenzo Librandi, Jun 09 2011
-
F:=Fibonacci; [F(n+1)^2+F(n)*F(n-2): n in [0..30]]; // Bruno Berselli, Feb 15 2017
-
with(combinat):seq(3*fibonacci(n)^2+(-1)^n, n= 0..27)
-
CoefficientList[Series[(1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2)), {x,0,50}], x] (* G. C. Greubel, Dec 31 2017 *)
-
x='x+O('x^30); Vec((1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2))) \\ G. C. Greubel, Dec 31 2017
A266708
Coefficient of x in minimal polynomial of the continued fraction [1^n,tau,1,1,1,...], where 1^n means n ones and tau = golden ratio = (1 + sqrt(5))/2.
Original entry on oeis.org
0, -10, -18, -56, -138, -370, -960, -2522, -6594, -17272, -45210, -118370, -309888, -811306, -2124018, -5560760, -14558250, -38114002, -99783744, -261237242, -683927970, -1790546680, -4687712058, -12272589506, -32130056448, -84117579850, -220222683090
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[tau,1,1,1,1,...] = sqrt(5) has p(0,x) = -5 + x^2, so a(0) = 0;
[1,tau,1,1,1,...] = (5 + sqrt(5))/5 has p(1,x) = 4 - 10*x + 5*x^2, so a(1) = -10;
[1,1,tau,1,1,...] = (9 - sqrt(5))/4 has p(2,x) = 19 - 18*x + 4*x^2, so a(2) = -18.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {GoldenRatio}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266707 *)
Coefficient[t, x, 1] (* A266708 *)
Coefficient[t, x, 2] (* A266707 *)
-
a(n) = round((2^(1-n)*(3*(-1)^n*2^(1+n)+(3-sqrt(5))^n*(-3+2*sqrt(5))-(3+sqrt(5))^n*(3+2*sqrt(5))))/5) \\ Colin Barker, Sep 30 2016
-
concat(0, Vec(-2*x*(5-x)/((1+x)*(1-3*x+x^2)) + O(x^30))) \\ Colin Barker, Sep 30 2016
A192916
Constant term in the reduction by (x^2 -> x+1) of the polynomial C(n)*x^n, where C=A022095.
Original entry on oeis.org
1, 0, 6, 11, 34, 84, 225, 584, 1534, 4011, 10506, 27500, 72001, 188496, 493494, 1291979, 3382450, 8855364, 23183649, 60695576, 158903086, 416013675, 1089137946, 2851400156, 7465062529, 19543787424, 51166299750, 133955111819, 350699035714, 918141995316
Offset: 0
-
F:=Fibonacci;; List([0..30], n-> F(2*n) +2*F(n)*F(n-1) +(-1)^n); # G. C. Greubel, Jul 28 2019
-
F:=Fibonacci; [F(2*n) +2*F(n)*F(n-1) +(-1)^n: n in [0..30]]; // G. C. Greubel, Jul 28 2019
-
(* First program *)
q = x^2; s = x + 1; z = 28;
p[0, x_]:= 1; p[1, x_]:= 5 x;
p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *)
(* Second program *)
With[{F=Fibonacci}, Table[F[2*n] +2*F[n]*F[n-1] +(-1)^n, {n,0,30}]] (* G. C. Greubel, Jul 28 2019 *)
-
a(n) = round((2^(-n)*(7*(-2)^n+(3+sqrt(5))^n*(-1+2*sqrt(5))-(3-sqrt(5))^n*(1+2*sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
-
Vec((1+4*x^2-2*x)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Oct 01 2016
-
vector(30, n, n--; f=fibonacci; f(2*n) +2*f(n)*f(n-1) +(-1)^n) \\ G. C. Greubel, Jul 28 2019
-
f=fibonacci; [f(2*n) +2*f(n)*f(n-1) +(-1)^n for n in (0..30)] # G. C. Greubel, Jul 28 2019
A192917
Coefficient of x in the reduction by (x^2 -> x+1) of the polynomial C(n)*x^n, where C=A022095.
Original entry on oeis.org
0, 5, 6, 22, 51, 140, 360, 949, 2478, 6494, 16995, 44500, 116496, 304997, 798486, 2090470, 5472915, 14328284, 37511928, 98207509, 257110590, 673124270, 1762262211, 4613662372, 12078724896, 31622512325, 82788812070, 216743923894, 567442959603, 1485584954924
Offset: 0
-
F:=Fibonacci;; List([0..30], n-> F(2*n+1) +2*F(n)^2 -(-1)^n); # G. C. Greubel, Jul 29 2019
-
F:=Fibonacci; [F(2*n+1) +2*F(n)^2 -(-1)^n: n in [0..30]]; // G. C. Greubel, Jul 29 2019
-
(* First program *)
q = x^2; s = x + 1; z = 28;
p[0, x_]:= 1; p[1, x_]:= 5 x;
p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *)
(* Second program *)
With[{F=Fibonacci}, Table[F[2*n+1] +2*F[n]^2 -(-1)^n, {n,0,30}]] (* G. C. Greubel, Jul 28 2019 *)
-
a(n) = round((2^(-1-n)*(-9*(-1)^n*2^(1+n)-(3-sqrt(5))^n*(-9+sqrt(5))+(3+sqrt(5))^n*(9+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
-
concat(0, Vec((-x*(-5+4*x))/((1+x)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Oct 01 2016
-
vector(30, n, n--; f=fibonacci; f(2*n+1) +2*f(n)^2 -(-1)^n) \\ G. C. Greubel, Jul 29 2019
-
f=fibonacci; [f(2*n+1) +2*f(n)^2 -(-1)^n for n in (0..30)] # G. C. Greubel, Jul 29 2019
Showing 1-4 of 4 results.
Comments