cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192894 Number of symmetric 13-ary factorizations of the n-cycle (1,2...n).

Original entry on oeis.org

1, 1, 1, 7, 13, 112, 247, 2310, 5525, 53998, 135408, 1360289, 3518515, 36017352, 95223414, 988172368, 2655417765, 27844071255, 75769712590, 801012669457, 2201663313200, 23428926096576, 64924369564353, 694644371065372, 1938034271677595, 20829931845958872, 58448142042957576
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2011

Keywords

Comments

The six sequences displayed in Table 1 of the Bousquet-Lamathe reference are A047749, A143546, A143547, A143554, A192893, A192894. From this one should be able to guess a g.f.

Crossrefs

Column k=13 of A369929 and k=14 of A370062.
Cf. A143049.

Formula

From Seiichi Manyama, Jul 07 2025: (Start)
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x)*A(-x))^6 ).
G.f. A(x) satisfies A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2), where G(x) = 1 + x*G(x)^13.
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_7>=0 and x_1+2*(x_2+x_3+...+x_7)=n-1} a(x_1) * Product_{k=2..7} a(2*x_k). (End)
a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_13>=0 and x_1+x_2+...+x_13=n-1} (-1)^(x_1+x_2+x_3+x_4+x_5+x_6) * Product_{k=1..13} a(x_k). - Seiichi Manyama, Jul 09 2025

Extensions

a(11) onwards from Andrew Howroyd, Jan 26 2024
a(0)=1 prepended by Seiichi Manyama, Jul 07 2025