A192905 Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.
0, 1, 3, 8, 25, 79, 248, 777, 2435, 7632, 23921, 74975, 234992, 736529, 2308483, 7235416, 22677769, 71078319, 222778856, 698249753, 2188505347, 6859373216, 21499148257, 67384199871, 211200478176, 661959956001, 2074763216131
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,1,1).
Programs
-
GAP
a:=[0,1,3,8];; for n in [5..30] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 11 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-x^2)/(1-3*x-x^3-x^4) )); // G. C. Greubel, Jan 11 2019 -
Mathematica
(See A192904.) LinearRecurrence[{3,0,1,1}, {0,1,3,8}, 30] (* G. C. Greubel, Jan 11 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(1-x^2)/(1-3*x-x^3-x^4))) \\ G. C. Greubel, Jan 11 2019
-
Sage
(x*(1-x^2)/(1-3*x-x^3-x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 11 2019
Formula
a(n) = 3*a(n-1) + a(n-3) + a(n-4).
G.f.: x*(1-x)*(1+x)/(1-3*x-x^3-x^4). - Colin Barker, Aug 31 2012
Comments