cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192911 Constant term in the reduction by (x^3 -> x + 1) of the polynomial F(n+1)*x^n, where F(n)=A000045 (Fibonacci sequence).

Original entry on oeis.org

1, 0, 0, 3, 5, 16, 52, 147, 442, 1320, 3916, 11664, 34717, 103298, 307440, 914949, 2722885, 8103424, 24116008, 71769885, 213589298, 635647790, 1891705884, 5629770720, 16754357925, 49861446392, 148389084968, 441610143507
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

Regarding polynomial reduction, see A192232 and A192744. In the case of the reduction at A192911, each term in the three resulting sequences is a product of a Fibonacci number and a tribonacci numbers
A192911(n) = F(n+1)*T3(n+1), where F=A000045, T3=A000073.
A192912(n) = F(n+1)*T2(n), where T2=A001590.
A192913(n) = F(n+1)*T3(n).
All three obey the same linear recurrence, shown below at Formula.

Examples

			The first six polynomials and reductions:
1 -> 1
x -> 2
2*x^2 -> 2*x^2
3*x^3 -> 3 + 3*x + 3*x^2
5*x^4 -> 5 + 10*x + 10*x^2
8*x^5 -> 16 + 24*x + 32*x^2
		

Crossrefs

Programs

  • GAP
    a:=[1,0,0,3,5,16];; for n in [7..30] do a[n]:=a[n-1]+4*a[n-2] + 5*a[n-3]+2*a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Jan 12 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1) )); // G. C. Greubel, Jan 12 2019
    
  • Mathematica
    q = x^3; s = x^2 + x + 1; z = 22;
    p[0, x_] := 1; p[1, x_] := x;
    p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192911 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192912 *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192913 *)
    LinearRecurrence[{1,4,5,2,-1,1},{1,0,0,3,5,16},28] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3 +4*x^2+x-1)) \\ G. C. Greubel, Jan 12 2019
    
  • Sage
    ((x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
    

Formula

a(n) = a(n-1) + 4*a(n-2) + 5*a(n-3) + 2*a(n-4) - a(n-5) + a(n-6).
G.f.: (x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1). - Colin Barker, Aug 31 2012