A192911 Constant term in the reduction by (x^3 -> x + 1) of the polynomial F(n+1)*x^n, where F(n)=A000045 (Fibonacci sequence).
1, 0, 0, 3, 5, 16, 52, 147, 442, 1320, 3916, 11664, 34717, 103298, 307440, 914949, 2722885, 8103424, 24116008, 71769885, 213589298, 635647790, 1891705884, 5629770720, 16754357925, 49861446392, 148389084968, 441610143507
Offset: 0
Examples
The first six polynomials and reductions: 1 -> 1 x -> 2 2*x^2 -> 2*x^2 3*x^3 -> 3 + 3*x + 3*x^2 5*x^4 -> 5 + 10*x + 10*x^2 8*x^5 -> 16 + 24*x + 32*x^2
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,5,2,-1,1).
Programs
-
GAP
a:=[1,0,0,3,5,16];; for n in [7..30] do a[n]:=a[n-1]+4*a[n-2] + 5*a[n-3]+2*a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Jan 12 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1) )); // G. C. Greubel, Jan 12 2019 -
Mathematica
q = x^3; s = x^2 + x + 1; z = 22; p[0, x_] := 1; p[1, x_] := x; p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192911 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192912 *) u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192913 *) LinearRecurrence[{1,4,5,2,-1,1},{1,0,0,3,5,16},28] (* Ray Chandler, Aug 02 2015 *)
-
PARI
my(x='x+O('x^30)); Vec((x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3 +4*x^2+x-1)) \\ G. C. Greubel, Jan 12 2019
-
Sage
((x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
Formula
a(n) = a(n-1) + 4*a(n-2) + 5*a(n-3) + 2*a(n-4) - a(n-5) + a(n-6).
G.f.: (x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1). - Colin Barker, Aug 31 2012
Comments