A192918 Decimal expansion of the real root of r^3 + r^2 + r - 1.
5, 4, 3, 6, 8, 9, 0, 1, 2, 6, 9, 2, 0, 7, 6, 3, 6, 1, 5, 7, 0, 8, 5, 5, 9, 7, 1, 8, 0, 1, 7, 4, 7, 9, 8, 6, 5, 2, 5, 2, 0, 3, 2, 9, 7, 6, 5, 0, 9, 8, 3, 9, 3, 5, 2, 4, 0, 8, 0, 4, 0, 3, 7, 8, 3, 1, 1, 6, 8, 6, 7, 3, 9, 2, 7, 9, 7, 3, 8, 6, 6, 4, 8, 5, 1, 5, 7, 9, 1, 4, 5, 7, 6, 0, 5, 9, 1, 2, 5, 4, 6, 2
Offset: 0
Examples
0.543689012692076361570855971801747986525203297650983935240...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Joerg Arndt, Matters Computational (The Fxtbook), section 38.9, A function encoding the Hilbert curve, page 748, y_1.
- Wikipedia, Triangle whose sides form a geometric progression.
- Index entries for algebraic numbers, degree 3
Programs
-
Magma
SetDefaultRealField(RealField(100)); (1/3)*(-1 -2/(17 +3*Sqrt(33))^(1/3) +(17+3*Sqrt(33))^(1/3)); // G. C. Greubel, Feb 06 2019
-
Mathematica
N[Reduce[r+r^2+r^3==1, r], 100] RealDigits[(1/3)*(-1 -2/(17+3*Sqrt[33])^(1/3) +(17+3*Sqrt[33])^(1/3)), 10, 100][[1]] (* G. C. Greubel, Feb 06 2019 *) RealDigits[Root[r^3+r^2+r-1,1],10,120][[1]] (* Harvey P. Dale, May 18 2023 *)
-
PARI
polrootsreal(r^3 + r^2 + r - 1)[1] \\ Charles R Greathouse IV, Apr 14 2014
-
Sage
numerical_approx((1/3)*(-1 -2/(17+3*sqrt(33))^(1/3) +(17+ 3*sqrt(33))^(1/3)), digits=100) # G. C. Greubel, Feb 06 2019
Formula
Equals (1/3)*(-1-2/(17+3*sqrt(33))^(1/3) + (17+3*sqrt(33))^(1/3)).
Equals (1/3)*(u_p^(1/3) + u_m^(1/3)*e_m - 1), with u_p = 17 + 3*sqrt(33), u_m = 17 - 3*sqrt(33), and e_m = -(1 - sqrt(3)*i), with i = sqrt(-1). - Wolfdieter Lang, Aug 22 2022
Equals hypergeom([1/4,1/2,3/4],[2/3,4/3],16/27)/2. - Gerry Martens, Jul 13 2023
Comments