cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192920 Coefficient of x in the reduction by (x^2 -> x+1) of the polynomial F(n+4)*x^n, where F=A000045 (Fibonacci sequence).

Original entry on oeis.org

0, 5, 8, 26, 63, 170, 440, 1157, 3024, 7922, 20735, 54290, 142128, 372101, 974168, 2550410, 6677055, 17480762, 45765224, 119814917, 313679520, 821223650, 2149991423, 5628750626, 14736260448, 38580030725, 101003831720, 264431464442
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

See A192872.

Crossrefs

Programs

  • GAP
    a:=[0,5,8];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 06 2019
  • Magma
    [Fibonacci(n+2)^2 -(-1)^n: n in [0..30]]; // G. C. Greubel, Feb 06 2019, modified Jul 28 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 28;
    p[0, x_]:= 3; p[1, x_]:= 5 x;
    p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192919 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192920 *)
    (* Second program *)
    LinearRecurrence[{2,2,-1}, {0,5,8}, 30] (* G. C. Greubel, Feb 06 2019 *)
  • PARI
    vector(30, n, n--; fibonacci(n+2)^2 -(-1)^n) \\ G. C. Greubel, Feb 06 2019, modified Jul 28 2019
    
  • Sage
    [fibonacci(n+2)^2 -(-1)^n for n in (0..30)] # G. C. Greubel, Feb 06 2019, modified Jul 28 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = A192883(n+1).
G.f.: x*(5-2*x)/((1+x)*(1-3*x+x^2)). - R. J. Mathar, Aug 01 2011
a(n) = (A005248(n+2) - 7*(-1)^n)/5. - R. J. Mathar, Aug 01 2011
a(n) = Fibonacci(n+2)^2 - (-1)^n. - G. C. Greubel, Feb 06 2019
Sum_{n>=1} 1/a(n) = 7/18. - Amiram Eldar, Oct 05 2020