A192920 Coefficient of x in the reduction by (x^2 -> x+1) of the polynomial F(n+4)*x^n, where F=A000045 (Fibonacci sequence).
0, 5, 8, 26, 63, 170, 440, 1157, 3024, 7922, 20735, 54290, 142128, 372101, 974168, 2550410, 6677055, 17480762, 45765224, 119814917, 313679520, 821223650, 2149991423, 5628750626, 14736260448, 38580030725, 101003831720, 264431464442
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
GAP
a:=[0,5,8];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 06 2019
-
Magma
[Fibonacci(n+2)^2 -(-1)^n: n in [0..30]]; // G. C. Greubel, Feb 06 2019, modified Jul 28 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 28; p[0, x_]:= 3; p[1, x_]:= 5 x; p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192919 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192920 *) (* Second program *) LinearRecurrence[{2,2,-1}, {0,5,8}, 30] (* G. C. Greubel, Feb 06 2019 *)
-
PARI
vector(30, n, n--; fibonacci(n+2)^2 -(-1)^n) \\ G. C. Greubel, Feb 06 2019, modified Jul 28 2019
-
Sage
[fibonacci(n+2)^2 -(-1)^n for n in (0..30)] # G. C. Greubel, Feb 06 2019, modified Jul 28 2019
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = A192883(n+1).
G.f.: x*(5-2*x)/((1+x)*(1-3*x+x^2)). - R. J. Mathar, Aug 01 2011
a(n) = (A005248(n+2) - 7*(-1)^n)/5. - R. J. Mathar, Aug 01 2011
a(n) = Fibonacci(n+2)^2 - (-1)^n. - G. C. Greubel, Feb 06 2019
Sum_{n>=1} 1/a(n) = 7/18. - Amiram Eldar, Oct 05 2020
Comments