cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A192919 Constant term in the reduction by (x^2 -> x+1) of the polynomial F(n+4)*x^n, where F=A000045 (Fibonacci sequence).

Original entry on oeis.org

3, 0, 8, 13, 42, 102, 275, 712, 1872, 4893, 12818, 33550, 87843, 229968, 602072, 1576237, 4126650, 10803702, 28284467, 74049688, 193864608, 507544125, 1328767778, 3478759198, 9107509827, 23843770272, 62423801000, 163427632717, 427859097162, 1120149658758
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

See A192872.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> F(n-1)*F(n+4)); # G. C. Greubel, Jul 28 2019
  • Magma
    F:=Fibonacci; [F(n-1)*F(n+4): n in [0..30]]; // G. C. Greubel, Jul 28 2019
    
  • Maple
    with(combinat):seq(fibonacci(n-1)*fibonacci(n+4), n=0..27);
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 28;
    p[0, x_]:= 3; p[1, x_]:= 5 x;
    p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192919 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192920 *)
    (* Second program *)
    With[{F=Fibonacci}, Table[F[n-1]*F[n+4], {n,0,30}]] (* G. C. Greubel, Jul 28 2019 *)
  • PARI
    a(n) = round((2^(-n)*(11*(-2)^n-(3-sqrt(5))^n*(-2+sqrt(5))+(2+sqrt(5))*(3+sqrt(5))^n))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((3+2*x^2-6*x)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • PARI
    vector(30, n, n--; f=fibonacci; f(n-1)*f(n+4)) \\ G. C. Greubel, Jul 28 2019
    
  • Sage
    f=fibonacci; [f(n-1)*f(n+4) for n in (0..30)] # G. C. Greubel, Jul 28 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = Fibonacci(n-1)*Fibonacci(n+4). - Gary Detlefs, Oct 19 2011
G.f.: (3 -6*x +2*x^2)/((1+x)*(1-3*x+x^2)). - R. J. Mathar, May 08 2014
a(n) + a(n+1) = A001906(n+1). - R. J. Mathar, May 08 2014
a(n) = (2^(-n)*(11*(-2)^n-(3-sqrt(5))^n*(-2+sqrt(5))+(2+sqrt(5))*(3+sqrt(5))^n))/5. - Colin Barker, Oct 01 2016
From Amiram Eldar, Oct 06 2020: (Start)
Sum_{n>=2} 1/a(n) = (1/5) * A290565 - 17/150.
Sum_{n>=2} (-1)^n/a(n) = 1/phi - 83/150, where phi is the golden ratio (A001622). (End)
Showing 1-1 of 1 results.