Original entry on oeis.org
1, 3, 20, 152, 1264, 11168, 102976, 979840, 9550592, 94876160, 957101056, 9778354176, 100970557440, 1052097552384, 11048512143360, 116814955118592, 1242454765535232, 13284730164346880, 142713773337346048, 1539605733158944768
Offset: 1
-
lista(nn) = {my(T=matrix(nn, nn)); T[1, 1] = 1; for (n=2, nn, for (k=1, n, T[n, k] = sum(i=1, n, sum(j=1, k, if ((i!=n) || (j!=k), T[i, j]))); ); ); vector(nn, k, vecsum(vector(k, i, T[k, i]))); } \\ Michel Marcus, Jul 16 2020
A336245
Triangle read by rows: row n gives coefficients T(n,k), in descending powers of m, of a polynomial P_n(m) (of degree n - 1) in an expression for the number of bimonotone subdivisions B(m,n) of a grid with two rows.
Original entry on oeis.org
1, 1, 0, 1, 3, -6, 1, 9, -4, -60, 1, 18, 47, -258, -600, 1, 30, 215, -270, -4896, -6720, 1, 45, 595, 1455, -16796, -84660, -85680, 1, 63, 1309, 8925, -22526, -470148, -1508424, -1239840, 1, 84, 2506, 30240, 66409, -1500324, -11721396, -28649040, -20200320
Offset: 1
Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins:
1;
1, 0;
1, 3, -6;
1, 9, -4, -60;
1, 18, 47, -258, -600;
1, 30, 215, -270, -4896, -6720;
...
P_3(m) = m^2 + 3*m - 6.
-
polf(n) = if (n==0, return(m)); my(p=bernpol(n+1,m)); (subst(p, m, m+1) - subst(p, m, 0))/(n+1); \\ Faulhaber
tabl(nn) = {my(p = 1, q); for (n=1, nn, if (n==1, q = p, q = (n-1)*(p + polf(n-2) - subst(polf(n-2), m, n-1) + sum(i=0, n-3, polcoef(p, i, m)*(polf(i)-subst(polf(i), m, n-1))))); print(Vec(q)); p = q;);}
Showing 1-2 of 2 results.
Comments