A192961 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 4, 11, 26, 55, 108, 201, 360, 627, 1070, 1799, 2992, 4937, 8100, 13235, 21562, 35055, 56908, 92289, 149560, 242251, 392254, 634991, 1027776, 1663345, 2691748, 4355771, 7048250, 11404807, 18453900, 29859609, 48314472, 78175107, 126490670
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 2*F(n+5)-(n^2+4*n+10)); # G. C. Greubel, Jul 12 2019
-
Magma
F:=Fibonacci; [2*F(n+5)-(n^2+4*n+10): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + n^2 + 2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192960 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192961 *) (* Second program *) With[{F=Fibonacci}, Table[2*F[n+5]-(n^2+4*n+10), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *) LinearRecurrence[{4,-5,1,2,-1},{0,1,4,11,26},40] (* Harvey P. Dale, Dec 30 2024 *)
-
PARI
vector(40, n, n--; f=fibonacci; 2*f(n+5)-(n^2+4*n+10)) \\ G. C. Greubel, Jul 12 2019
-
Sage
f=fibonacci; [2*f(n+5)-(n^2+4*n+10) for n in (0..40)] # G. C. Greubel, Jul 12 2019
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
From R. J. Mathar, May 09 2014: (Start)
G.f.: x*(1+x)*(1-x+x^2)/((1-x-x^2)*(1-x)^3).
a(n) - a(n-1)= A192960(n-1). (End)
a(n) = 2*Fibonacci(n+5) - (n^2 + 4*n + 10). - G. C. Greubel, Jul 12 2019
Comments