A192962 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
1, 2, 7, 15, 30, 55, 97, 166, 279, 463, 762, 1247, 2033, 3306, 5367, 8703, 14102, 22839, 36977, 59854, 96871, 156767, 253682, 410495, 664225, 1074770, 1739047, 2813871, 4552974, 7366903, 11919937, 19286902, 31206903, 50493871, 81700842
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([1..40], n-> 3*F(n+1) +4*F(n) -2*(n+2)); # G. C. Greubel, Jul 12 2019
-
Magma
F:=Fibonacci; [3*F(n+1) +4*F(n) -2*(n+2): n in [1..40]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + n(n+1); Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192962 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192963 *) (* Additional programs *) CoefficientList[Series[(1-x+3x^2-x^3)/((1-x-x^2)(1-x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *) With[{F=Fibonacci}, Table[3*F[n+1]+4*F[n] -2*(n+2), {n,1,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
PARI
vector(40, n, f=fibonacci; 3*f(n+1)+4*f(n)-2*(n+2)) \\ G. C. Greubel, Jul 12 2019
-
Sage
f=fibonacci; [3*f(n+1) +4*f(n) -2*(n+2) for n in (1..40)] # G. C. Greubel, Jul 12 2019
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
From R. J. Mathar, May 09 2014: (Start)
G.f.: x*(1 -x +3*x^2 -x^3)/((1-x-x^2)*(1-x)^2).
a(n) -2*a(n-1) + a(n-2) = A022120(n-4). (End)
a(n) = 3*Fibonacci(n+1) + 4*Fibonacci(n) - 2*(n+2). - G. C. Greubel, Jul 12 2019
Comments