A192970 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 3, 9, 21, 44, 85, 156, 276, 476, 806, 1347, 2230, 3667, 6001, 9787, 15923, 25862, 41955, 68006, 110170, 178406, 288828, 467509, 756636, 1224469, 1981455, 3206301, 5188161, 8394896, 13583521, 21978912, 35562960, 57542432, 93105986
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 2*F(n+4)+F(n+2)-(n^2+7*n+14)/2); # G. C. Greubel, Jul 24 2019
-
Magma
[Fibonacci(n+4)+Lucas(n+3)-(n^2+7*n+14)/2: n in [0..40]]; // Vincenzo Librandi, Jul 13 2019
-
Mathematica
(* First progream *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + n*(n+3)/2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192969 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192970 *) (* Additional programs *) CoefficientList[Series[x*(1-x+2*x^2-x^3)/((1-x-x^2)*(1-x)^3), {x,0,40}], x] (* Vincenzo Librandi, Jul 13 2019 *) Table[LucasL[n+3]+Fibonacci[n+4]-(n^2+7*n+14)/2, {n,0,40}] (* G. C. Greubel, Jul 24 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; 2*f(n+4)+f(n+2)-(n^2+7*n+14)/2) \\ G. C. Greubel, Jul 24 2019
-
Sage
f=fibonacci; [2*f(n+4)+f(n+2)-(n^2+7*n+14)/2 for n in (0..40)] # G. C. Greubel, Jul 24 2019
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1-x+2*x^2-x^3)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 11 2014
a(n) = Fibonacci(n+4) + Lucas(n+3) - (n^2 + 7*n + 14)/2. - Ehren Metcalfe, Jul 13 2019
Comments