A192973 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
1, 3, 10, 23, 47, 88, 157, 271, 458, 763, 1259, 2064, 3369, 5483, 8906, 14447, 23415, 37928, 61413, 99415, 160906, 260403, 421395, 681888, 1103377, 1785363, 2888842, 4674311, 7563263, 12237688, 19801069, 32038879, 51840074, 83879083
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([1..40], n-> F(n+4)+3*F(n+2) -2*(2*n+3)); # G. C. Greubel, Jul 24 2019
-
Magma
[Lucas(n+4)-Fibonacci(n-1)-2*(2*n+3): n in [1..40]]; // Vincenzo Librandi, Jul 14 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + 2*n^2 +1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192973 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192974 *) (* Additional programs *) LinearRecurrence[{3, -2, -1, 1}, {1, 3, 10, 23}, 50] (* Vincenzo Librandi, Jul 14 2019 *) With[{F = Fibonacci}, Table[F[n+4]+3*F[n+2] -2*(2*n+3), {n,40}]] (* G. C. Greubel, Jul 24 2019 *)
-
PARI
vector(40, n, f=fibonacci; f(n+4)+3*f(n+2) -2*(2*n+3)) \\ G. C. Greubel, Jul 24 2019
-
Sage
f=fibonacci; [f(n+4)+3*f(n+2) -2*(2*n+3) for n in (1..40)] # G. C. Greubel, Jul 24 2019
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: x*(1+3*x^2)/((1-x-x^2)*(1-x)^2). - R. J. Mathar, May 11 2014
a(n) = Lucas(n+4) - Fibonacci(n-1) - 2*(2*n+3). - Ehren Metcalfe, Jul 13 2019
Comments