A192980 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 2, 6, 15, 34, 70, 135, 248, 440, 761, 1292, 2164, 3589, 5910, 9682, 15803, 25726, 41802, 67835, 109980, 178196, 288597, 467256, 756360, 1224169, 1981130, 3205950, 5187783, 8394490, 13583086, 21978447, 35562464, 57541904, 93105425
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 2*F(n+4)+F(n+2) -(n^2+3*n+7)); # G. C. Greubel, Jul 24 2019
-
Magma
[Fibonacci(n+4)+Lucas(n+3)-(n^2+3*n+7): n in [0..40]]; // G. C. Greubel, Jul 24 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] +n^2-n+1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192979 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192980 *) (* Additional programs *) CoefficientList[Series[x*(1-2*x+3*x^2)/((1-x-x^2)*(1-x)^3), {x,0,40}], x] (* Vincenzo Librandi, May 13 2014 *) Table[Fibonacci[n+4]+LucasL[n+3] -(n^2+3*n+7), {n,0,40}] (* G. C. Greubel, Jul 24 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; 2*f(n+4)+f(n+2) -(n^2+3*n+7)) \\ G. C. Greubel, Jul 24 2019
-
Sage
f=fibonacci; [2*f(n+4)+f(n+2) -(n^2+3*n+7) for n in (0..40)] # G. C. Greubel, Jul 24 2019
Formula
a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5).
G.f.: x*(1-2*x+3*x^2)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 12 2014
a(n) = Fibonacci(n+4) + Lucas(n+3) - (n^2 + 3*n + 7). - G. C. Greubel, Jul 24 2019
Comments