A192982 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 1, 3, 8, 20, 44, 89, 169, 307, 540, 928, 1568, 2617, 4329, 7115, 11640, 18980, 30876, 50145, 81345, 131851, 213596, 345888, 559968, 906385, 1466929, 2373939, 3841544, 6216212, 10058540, 16275593, 26335033, 42611587, 68947644, 111560320
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> F(n+4)+2*F(n+2) -(n^2+2*n+5)); # G. C. Greubel, Jul 25 2019
-
Magma
F:=Fibonacci; [F(n+4)+2*F(n+2) -(n^2+2*n+5): n in [0..40]]; // G. C. Greubel, Jul 25 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + (n-1)^2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192981 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192982 *) (* Additional programs *) CoefficientList[Series[x*(1-3*x+4*x^2)/((1-x-x^2)*(1-x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, May 13 2014 *) Table[LucasL[n+3]+Fibonacci[n+2]-(n^2+2*n+5), {n,0,40}] (* G. C. Greubel, Jul 25 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; f(n+4)+2*f(n+2) -(n^2+2*n+5)) \\ G. C. Greubel, Jul 25 2019
-
Sage
f=fibonacci; [f(n+4)+2*f(n+2) -(n^2+2*n+5) for n in (0..40)] # G. C. Greubel, Jul 25 2019
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1-3*x+4*x^2)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 12 2014
a(n) = Lucas(n+3) + Fibonacci(n+2) - (n^2 + 2*n + 5). - G. C. Greubel, Jul 25 2019
Comments