cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192990 Pyramid P(n, t, d) read by planes and rows, for 0 <= t+d <= n: number of ways n triples can sit in a row so that exactly t triples are together and exactly d triples are separated into a couple and a loner.

Original entry on oeis.org

1, 0, 0, 6, 72, 144, 288, 0, 144, 72, 37584, 95904, 98496, 51840, 11664, 25920, 31104, 1296, 7776, 1296, 53529984, 127899648, 130761216, 69921792, 17915904, 11321856, 26002944, 23887872, 10202112, 1430784, 2985984, 2612736, 124416, 373248, 31104
Offset: 0

Views

Author

Andrew Woods, Aug 02 2011

Keywords

Comments

The plane P(n,,) contains (n+1)*(n+2)/2 numbers.
The row P(n,t,) contains n+1-t numbers.
P(n,t,d) = a((n+1)*(n+2)*(n+3)/6 - (n-t+1)*(n-t+2)/2 + d)
The plane P(n,,) sums to (3n)!

Examples

			Pyramid starts:
1...0 0...72 144 288...37584 95904 98496 51840
....6..... 0 144.......11664 25920 31104
..........72........... 1296  7776
....................... 1296
There are P(3,1,2) = 31104 ways to arrange three sets of triples in a row so that one is together and two are split into a couple and a loner.
		

Crossrefs

P(n,0,0) = A193624(n).