cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A190826 Number of permutations of 3 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 29, 1721, 163386, 22831355, 4420321081, 1133879136649, 372419001449076, 152466248712342181, 76134462292157828285, 45552714996556390334921, 32173493282909179882613934, 26487410329744429030530295991, 25143126122564855343240882599761, 27260957330891104469298062949026065
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Examples

			Some of the a(3) = 29 solutions for n=3: 123232131, 123121323, 123123213, 123212313, 123213123, 121323132, 123132312, 123123123, 123231213, 121323123, 121321323, 121312323, 121323231, 123231321, 121313232, 123132321, ...
		

Crossrefs

Row n=3 of A322013.

Programs

  • Magma
    B:=Binomial;
    f:= func< n,j | (&+[B(n,k)*B(2*k,j)*(-3)^(k-j): k in [Ceiling(j/2)..n]]) >;
    A190826:= func< n | (-1/2)^n*(&+[Factorial(j)*B(n+j,j)*f(n,j): j in [0..2*n]]) >;
    [A190826(n): n in [0..30]]; // G. C. Greubel, Sep 22 2023
    
  • Mathematica
    a[n_]:= 1/(6^n*n!)*Sum[(n+j)! Sum[Binomial[n,k] Binomial[2k,j] (-3)^(n+k-j), {k, Ceiling[j/2], n}], {j,0,2n}]; Array[a, 16, 0] (* Jean-François Alcover, Jul 22 2017, after Tani Akinari's code for A193638 *)
  • SageMath
    b=binomial;
    def f(j,n): return sum(b(n,k)*b(2*k,j)*(-3)^(k-j) for k in range((j//2),n+1))
    def A190826(n): return (-1/2)^n*sum(factorial(j)*b(n+j,j)*f(j,n) for j in range(2*n+1))
    [A190826(n) for n in range(31)] # G. C. Greubel, Sep 22 2023

Formula

a(n) = A193624(n)/(6^n * n!), for n >= 1.
a(n) = A193638(n)/n!, for n >= 1.
a(n) = A192990(binomial(n+2,3)) / (6^n * n!), for n >= 1.
2*a(n) -3*(3*n^2-3*n+4)*a(n-1) +2*(9*n^2-42*n+47)*a(n-2) +8*(3*n-7)*a(n-3) -8*a(n-4) = 0. - R. J. Mathar, May 23 2014
a(n) = (1/(6^n * n!)) * Sum_{j=0..2*n} Sum_{k=ceiling(j/2)..n} (n+j)! * binomial(2*k, j) * binomial(n, k) * (-3)^(n+k-j). - Jean-François Alcover, Jul 22 2017
a(n) ~ 3^(2*n + 1/2) * n^(2*n) / (2^n * exp(2*n + 2)). - Vaclav Kotesovec, Nov 24 2018

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 22 2017

A192991 Semiprimes times powers of 2.

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 92, 96, 98, 100, 102, 104, 110, 112, 114, 116, 120, 124, 128, 130, 132, 136, 138, 140, 144, 148, 152, 154, 156, 160, 164, 168, 170, 172, 174, 176
Offset: 1

Views

Author

Jonathan Vos Post, Jul 13 2011

Keywords

Comments

Semiprimes times powers of 2 greater than 2^0 = 1.

Examples

			240 = 6th semiprime * 2^4 = 3 * 5 * 16.
		

Crossrefs

Programs

  • Mathematica
    upto=176;Select[Union[Flatten[2^Range[Ceiling[Log[2,upto]]] #&/@ Select[ Range[upto],PrimeOmega[#]==2&]]],#<=upto&](* Harvey P. Dale, Jul 19 2011 *)
  • PARI
    is(n)=my(e=valuation(n,2)); (e>2 && n>>e==1) || (e>1 && isprime(n>>e)) || (e>0 && bigomega(n>>e)==2) \\ Charles R Greathouse IV, Feb 21 2017

Formula

{A001358(i) * 2^j, j>0}.
Showing 1-2 of 2 results.