A193023 Triangle read by rows: the n-th row has length A000110(n) and contains all set partitions of an n-set in canonical order.
1, 11, 12, 111, 112, 121, 122, 123, 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1221, 1222, 1223, 1231, 1232, 1233, 1234, 11111, 11112, 11121, 11122, 11123, 11211, 11212, 11213, 11221, 11222, 11223, 11231, 11232, 11233, 11234, 12111, 12112, 12113, 12121
Offset: 1
Examples
Triangle begins: 1; 11,12; 111,112,121,122,123; 1111,1112,1121,1122,1123,1211,1212,1213,1221,1222,1223,1231,1232,1233,1234; 11111,11112,11121,11122,11123,...
Links
- Alois P. Heinz, Rows n = 1..8, flattened
- R. Kaye, A Gray code for set partitions, Info. Proc. Letts., 5 (1976), 171-173.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=1, [[1]], map(x-> seq([x[], i], i=1..max(x[])+1), b(n-1))) end: T:= n-> map(x-> parse(cat(x[])), b(n))[]: seq(T(n), n=1..5); # Alois P. Heinz, Sep 30 2011
-
Mathematica
b[n_] := b[n] = If[n == 1, {{1}}, Table[Append[#, i], {i, 1, Max[#]+1}]& /@ b[n-1] // Flatten[#, 1]&]; T[n_] := FromDigits /@ b[n]; Array[T, 8] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)
Comments