A193043 Listed by antidiagonals, array A[k,n] = digital root of n-th nonzero k-gonal number.
1, 1, 3, 1, 4, 6, 1, 5, 9, 1, 1, 6, 3, 7, 6, 1, 7, 6, 4, 7, 3, 1, 8, 9, 1, 8, 9, 1, 1, 9, 3, 7, 9, 6, 4, 9, 1, 1, 6, 4, 1, 3, 7, 1, 9, 1, 2, 9, 1, 2, 9, 1, 2, 9, 1, 1, 3, 3, 7, 3, 6, 4, 3, 9, 1, 3, 1, 4, 6, 4, 4, 3, 7, 4, 9, 1, 4, 6, 1, 5, 9, 1, 5, 9, 1, 5, 9, 1, 5, 9, 1
Offset: 1
Examples
The array begins: =================================================== ....|n=1|n=2|n=3|n=4|n=5|n=6|n=7|n=8|comment ====|===|===|===|===|===|===|===|===|============== k=3.|.1.|.3.|.6.|.1.|.6.|.3.|.1.|.9.| k=4.|.1.|.4.|.9.|.7.|.7.|.9.|.4.|.1.| k=5.|.1.|.5.|.3.|.4.|.8.|.6.|.7.|.2.|A193090 k=6.|.1.|.6.|.6.|.1.|.9.|.3.|.1.|.3.| k=7.|.1.|.7.|.9.|.7.|.1.|.9.|.4.|.4.| k=8.|.1.|.8.|.3.|.4.|.2.|.6.|.7.|.5.| k=9.|.1.|.9.|.6.|.1.|.3.|.3.|.1.|.6.| k=10|.1.|.1.|.9.|.7.|.4.|.9.|.4.|.7.| ===================================================
Links
- Eric W. Weisstein, Polygonal Number
- Eric W. Weisstein, Digital Root
Programs
-
Mathematica
dr[n_]:=1+Mod[n-1,9]; A[k_,n_]:=dr[n*(n*(k-2)-(k-4))/2]; Flatten[Table[A[d-i+3,i],{d,13},{i,d}]] (* Ray Chandler, Aug 16 2011 *)
Extensions
Corrected and extended by Ray Chandler, Aug 16 2011
Comments